• Title/Summary/Keyword: Wall Column Structure

Search Result 123, Processing Time 0.024 seconds

Structural Effect on Curtailment of Upper Shear Wall in Frame-Shear Wall Structure (골조-전단벽 구조에서 상부 전단벽 미배치의 구조효과)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.18-25
    • /
    • 2016
  • This research purposed to study a structural effect on curtailment of upper shear wall in frame-shear wall structures, using MIDAS-Gen. In this study, the analysis variables were the story number of curtailment of upper shear wall, change of column section in every 2 stories and change of shear wall thickness in every 2 stories. In order to analyse a structural effect on curtailment of upper shear wall in frame-shear wall structures, we studied the distribution of shear force and overturning moment according to curtailment of shear wall, the inflection point of shear wall from shear force/overturning moment and the lateral stiffness. The results of study proposed the quantitative influence that the curtailment of upper shear wall in frame-shear wall structures had on the structural performance such as lateral stiffness. Furthermore, it is verified that the results of study can be very helpful in catching the materials on the structure design for a reasonable frame-shear wall system.

A Study on the Improvement of the Floor Impact Sound Insulation Performance in Wall Slab Type Apartment (벽식구조 공동주택의 바닥충격음 개선에 대한 연구)

  • Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.73-81
    • /
    • 2012
  • Floor impact sound has been most annoying for years among the noises which are produced in apartment. This study aims to analyze the improvement of floor impact sound by comparing the results of the test which was carried out for the wall slab type apartment and moment frame apartment, and also for the effect of advanced vibration isolation layer. Moment frame structure that main structure consists of column and slab has shown better performance for the heavyweight impact sound comparing with wall slab type structure which is general type in Korea. Stiffness of floor system was raised by reinforcing the stiffness of vibration isolation layer, and it was analyzed how much the floor impact sound performance was improved. The result showed that the reinforced floor had better performance than the existing floor system that uses lightweight porous concrete as vibration isolation material. In addition, a system used wire mesh in mortar showed improvement of floor impact sound than a system without wire mesh, and better performance for the frequency bands lower than 160 Hz which causes floor impact problem in wall slab type apartment.

Analysis for foundation moments in space frame-shear wall-nonlinear soil system

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1369-1389
    • /
    • 2016
  • The soil-structure interaction effect significantly influences the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic loads. In the present work, the nonlinear soil-structure analysis of a G+5 storey RC shear wall building frame having isolated column footings and founded on deformable soil is presented. The nonlinear seismic FE analysis is carried out using ANSYS software for the building with and without shear walls to investigate the effect of inclusion of shear wall on the moments in the footings due to differential settlement of soil mass. The frame is considered to behave in linear elastic manner, whereas, soil mass to behave in nonlinear manner. It is found that the interaction effect causes significant variation in the moments in the footings. The comparison of non-interaction and interaction analyses suggests that the presence of shear wall causes significant decrease in bending moments in most of the footings but the interaction effect causes restoration of the bending moments to a great extent. A comparison is made between linear and nonlinear analyses to draw some important conclusions.

The Evaluation of the Proposal for Condominium Housing Remodeling in National Housing Scale($85m^2$) (국민주택 규모의 공동주택 리모델링 계획안의 평가)

  • Choi, Jung-Min
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.3 s.62
    • /
    • pp.119-129
    • /
    • 2007
  • This study illustrates a prototype proposal and its evaluation for the development of floor plans in the condominium housing remodeling. For this I evaluated the survey of the residents of the 'K' town in Joonge-dong, Nowon-gu, Seoul, against the proposal which was developed based on the resident's pre-survey. The result includes that the residents' preference for community actions such as the removal of fences which are reviewed as negative, whereas the introduction of a fitness center and community facilities in the library are reviewed as positive. The residents preferred the open space by the piloti structure, although which is the wall column structure, where they anticipated a rest area, sports facilities, and bicycle drop-off spots. The sidewall proposal in the main building and the full use of the roof floor were underestimated in terms of design concept. The research also illustrated the residents' desired space planning options, those tending to use of space 'B type', personalization 'C type' and spatial size 'A type'. Residents responded positively to the introduction of the 'Alpha' space in which two households share one space that could be used for multiple purposes such as a rest area, an environment-friendly garden, and hobby room, etc, and also there is another possibility it plays an important role to the sociality in community.

On Modeling for Nonlinear Analysis of Shear Wall Element in Shear Wall Structures (철근콘크리트 벽식 구조물에서 전단벽의 탄소성 해석용 모델화 방법의 검토)

  • 전대한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.291-296
    • /
    • 2000
  • In this paper a relatively simple and reliable wall models are investigated, which are suitable to be efficiently incorporated in a practical nonlinear seismic analysis of reinforced concrete shear wall structural systems. Four types of analogous frames have been selected for the elastic stress analysis. Three types of macro-elements model which include wide-column model, truss model and Kabeyasawa model, are chosen for the use in nonlinear analysis. A numerical analysis is carried out for six stories plane coupled wall structure. Analysis results indicate that macro-elements wall model is effective and suitable for simulating stress in elastic analysis. In inelastic analysis, the yielding strength have little effect on different wall model, and the effect on post-yielding stiffness in story shear-drift relationship depend on force-deformation properties of macro-elements.

  • PDF

Evaluation of Progressive Collapse Resisting Capacity of Tall Buildings

  • Kwon, Kwangho;Park, Seromi;Kim, Jinkoo
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.229-235
    • /
    • 2012
  • In this paper the progressive collapse potential of building structures designed for real construction projects were evaluated based on arbitrary column removal scenario using various alternate path methods specified in the GSA guidelines. The analysis model structures are a 22-story reinforced concrete moment frames with core wall building and a 44-story interior concrete core and exterior steel diagrid structure. The progressive collapse resisting capacities of the model structures were evaluated using the linear static, nonlinear static, and nonlinear dynamic analyses. The linear static analysis results showed that progressive collapse occurred in the 22-story model structure when an interior column was removed. However the structure turned out to be safe according to the nonlinear static and dynamic analyses. Similar results were observed in the 44-story diagrid structure. Based on the analysis results, it was concluded that, compared with nonlinear analysis procedures, the linear static method is conservative in the prediction of progressive collapse resisting capacity of building structure based on arbitrary column removal scenario.

A basic study on Visual judgment method for the Dent of Lightweight wall surface (경량벽체 표면의 패임에 대한 시각적 판단방법에 관한 기초적 연구)

  • Kim, Jin-Sik;Shin, Yun-Ho;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.36-37
    • /
    • 2015
  • Recently, there has been a rapid increase in demand for lightweight walls for their use as interior partitions, as types of structure have gradually changed from shear wall structures to column structures or flat plate column wall systems. The lack of resisting force in lightweight walls is found by measuring the depth of dents in impact resistance tests, but it is not a direct factor of impact resistance. However, in the user's position, dents of over a certain size are clearly a factor that visually reminds the need for repair. In this study, we reviewed relative methods of assessment of the need for repair based on the visual means of determination (sensory test) on the dents on lightweight walls. Dents were found to stand out starting from depths of about 4mm, and the depth of roughly 5mm was found to be the criterion for determining the necessity of repair for men, while it was 4mm for women.

  • PDF

A Comparative Study on the Life Cycle Cost of Wall Type Apartment and Beam-Column Structural Apartment (생애주기비용 분석을 통한 벽식 구조 공동주택과 장수명 공동주택의 경제성 비교 연구)

  • Lee, Jeehee;Kim, Kyuree;Son, JeongWook;Yi, June-Seong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.6
    • /
    • pp.35-43
    • /
    • 2014
  • Ministry of Land, Infrastructure and Transport (MOLIT) promote long-life housing to reduce social costs generated by poorly considered rebuilding and extend the life-span of housing. Long-life housing has advantages of durability, floor plan variability, efficient maintenance and ease of remodeling because it is a beam-column structure building. However, long-life housing requires somewhat higher initial construction cost than wall type apartments. It makes increase of long-life housing more difficult. In this study, we compare between wall-type apartment and beam-column structure apartment from Life-Cycle Cost's viewpoint. As a result of the study, long-life housing incurs 18% higher initial cost than wall type apartment, but is 7% more economical than wall type apartment in terms of Life Cycle Cost. Therefore, it is shown that long-life housing could be a beneficial alternative to traditional wall type apartments.

A Study on Axial Stress Measurement and analysis of High-rise Building Structure Health Monitoring (초고층 구조물 건전성 모니터링을 위한 축응력 계측 및 해석에 관한 연구)

  • Lee, Jong-Ho;Kim, Seon-Gyu;Chun, Young-Jun;Lee, Seung-Min;Im, Jong-Soon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.91-92
    • /
    • 2015
  • This study was performed for application of Structural Health Monitoring system of Jamsil Lotte World Tower. Axial stresses of mega column and core wall are measured in the past 29 months for axial stress monitoring and evaluating predicted self weight. We use the midas gen program(FEM analysis program) with construction stage analysis mode to predict axial stress. 8 mega column axial stressmeters are installed at 21st floor and 4 core wall stressmeters are installed at 38th floor. Measurement data was obtained without creep and shrinkage effect.

  • PDF