• Title/Summary/Keyword: Wall Boundary Condition

Search Result 272, Processing Time 0.022 seconds

Optimization of a Convective Rectangular Profile Annular Fin (대류 직각 형상 환형 휜의 최적화)

  • 강형석;조철현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • The rectangular profile annular fin with fixed volume is optimized using 2-dimensional analytic method. For a base boundary condition, convection from fluid within the pipe to the inside wall of the pipe and conduction from the inside wall of the pipe to the fin base are considered. Heat loss from the fin tip radius is not ignored. The maximum heat loss, the optimum fin tip radius and the optimum fin half thickness corresponding to the maximum heat loss are presented as a function of fin base radius, Biot number over the fin surface and Biot number within the pipe. Results show 1) the maximum heat loss increases as both Biot number over the fin surface and Biot number within the pipe increase and as fin base radius decreases 2) the optimum fin thickness increases as Biot number within the pipe decreases or as fin base radius and Biot number over the fin surface increase.

A Study on Application Boundary of Wireless LAN's Communication for Space Variation (공간변화에 따른 Wireless LAN의 통신 활용 범위에 관한 연구)

  • Cha, Jin-Man;Kang, Min-Soo;Park, Yeoun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.499-503
    • /
    • 2005
  • The objective of this thesis is to measure the limit of the real space where wireless Local Area Network(LAN) is used, and to apply this result as reference to set up a real Wireless LAN environment. The organized circumference was composed of Wireless LAN based on IEEE 802.11b of the American standard, and the examination is carried out on the campus. On the real condition of office environment and open space, the ratio of available distance to a signal at each distance was measured and this result was studied as data to embody wireless LAN on the campus. The measurement under an indoor environment was executed under circumstance having two wall and open space, however, was executed respectively under three circumstances : Where no obstacle, where one wall exists, and where two or more walls exist.

  • PDF

Comparative Evaluation on the Deriving Method of the Heat Transfer Coefficient of the C-D Nozzle (축소 확대 노즐의 열전달 해석을 위한 열전달 계수 계산 및 검증)

  • Noh, Tae Won;Roh, Tae-Seong;Lee, Hyoung Jin;Lee, Hyunseob;Yoo, Phil Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • The heat transfer coefficient on the wall, which is used as a boundary condition in the thermal analysis of general contract-divergent supersonic nozzles, affects the thermal analysis accuracy of the entire nozzle. Accordingly, many methods of deriving a heat transfer coefficient have been proposed. In this study, the accuracy of each method was compared. For this purpose, the heat transfer coefficients were calculated through theoretical-based analogy methods, semi-empirical equations, and CFD simulations for the previously performed heat transfer experiment with an isothermal wall and compared with the experimental results. The results show that the Prandtl-Taylor analogy methods and the CFD results with the k-ω SST turbulence model were in good agreement with the experimental results. Furthermore, the Modified Bartz empirical formula showed an overall over-prediction tendency.

Restrained Bending Effect by the Support Plate on the Steam Generator Tube with Circumferential Cracks (원주방향 균열 존재 증기발생기 전열관에 미치는 지지판의 굽힘제한 영향)

  • Kim, Hyun-Su;Jin, Tae-Eun;Kim, Hong-Deok;Chung, Han-Sub;Chang, Yoon-Suk;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.277-284
    • /
    • 2007
  • The steam generator in a nuclear power plant is a large heat exchanger that uses heat from a reactor to generate steam to drive the turbine generator. Rupture of a steam generator tube can result in release of fission products to environment outside. Therefore, an accurate integrity assessment of the steam generator tubes with cracks is of great importance for maintaining the safety of a nuclear power plant. The steam generator tubes are supported at regular intervals by support plates and rotations of the tubes are restrained. Although it has been reported that the limit load for a circumferential crack is significantly affected by boundary condition of the tube, existing limit load solutions do not consider the restraining effect of support plate correctly. In addition, there are no limit load solutions for circumferential cracks in U-bend region with the effect of the support plate. This paper provides detailed limit load solutions for circumferential cracks in top of tube sheet and the U-bend regions of the steam generator tube with the actual boundary conditions to simulate the restraining effect of the support plate. Such solutions are developed based on three dimensional finite element analyses. The resulting limit load solutions are given in a polynomial form, and thus can be simply used in practical integrity assessment of the steam generator tubes.

A Numerical Study on Mixed Convection Heat Transfer in Concentric Curved Annuli (동심환형 곡관의 혼합대류 열전달 현상에 관한 수치적 연구)

  • 최훈기;유근종
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.283-290
    • /
    • 2002
  • Numerical calculations have been carried out for the mixed convection flow in a concentric curved annulus with constant heat flux boundary condition at inner wall. The flow is assumed to be fully developed so as to maintain a constant streamwise pressure and temperature gradient. Computations have been performed for flows of radius ratio 0.2 and 0.5 with the Dean number lying in the range 0$K^{1/2}$ for the wide range of the Dean number considered here.

Flow Phenomena in Micro-channel Filling Process (II) - Numerical Analysis - (마이크로 채널 충전 과정의 유동 현상 (II) - 수치 해석 -)

  • Kim, Dong-Sung;Lee, Kwang-Cheol;Kwon, Tai-Hun;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.657-665
    • /
    • 2003
  • Several interesting results were obtained from the flow visualization experiment in the accompanying paper, Part I. in the present study, Part II, a numerical study has been carried out to explain the detailed flow phenomena in micro-channel filling process. Hele-Shaw flow approximation was applied to the micro-channel geometry based on the small characteristic length. And surface tension effect has been introduced on the flow front as the boundary condition with the help of a dynamic contact angle concept between the melt front and the wall. A dimensional analysis for numerical results was carried out and a strong relationship between dimensionless pressure and Capillary number is obtained. The numerical analysis results are compared with the flow visualization experimental observations. And the numerical system developed in the present study seems to be able to predict the interesting micro-channel filling flow characteristics observed from experiments.

Study on Thermal Insulation Design and Heat Flow Analysis of Spacecraft Shipping Container (위성 운송용 컨테이너의 단열 설계와 열 유동 해석에 관한 연구)

  • Park, Sang-Rae;Lee, Choon-Woo;Kim, Jin-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • In this paper, we propose a container wall and its boundary layer insulation design method that can maintain the temperature inside the spacecraft shipping container constantly under the condition that the heat or the external temperature changes severely to safely transport the satellite to the launch site. We will examine if the temperature inside the satellite shipping container is kept constant through the heat flow analysis and the satellite heat transfer analysis for the external environment of the satellite shipping container. Through the flow analysis inside the container, the flow distribution around the satellite in the container is analyzed, and the auxiliary fan, air conditioning system and special grill guide structure design for improving and optimizing heat flow performance are proposed.

Effects of thermal boundary conditions and microgravity environments on physical vapor transport of $Hg_2Cl_2-Xe$ system

  • Kim, Geug-Tae;Kwon, Moo-Hyun;Lee, Kyong-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.172-183
    • /
    • 2009
  • For the effects of the nonlinear temperature profiles and reduced-gravity conditions we conduct a two-dimensional numerical modeling and simulations on the physical vapor transport processes of $Hg_2Cl_2-Xe$ system in the horizontal orientation position. Our results reveal that: (1) A decrease in aspect ratio from 5 to 2 leads to an increasingly nonuniform interfacial distribution and enhances the growth rate by one-order magnitude for normal gravity and linear wall temperature conditions. (2) Increasing the molecular weight of component B, Xenon results in a reduction in the effect of solutal convection. (3) The effect of aspect ratio affects the interfacial growth rates significantly under normal gravity condition rather than under reduced gravitational environments. (4) The transition from the convection-dominated regime to the diffusion-dominated regime ranges arises near at 0.1g$_0$ for operation conditions under consideration in this study.

Heat Transfer Correlations for Air-Water Two-Phase Flow of Different Flow Patterns In a Horizontal Pipe

  • Kim, Dongwoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1711-1727
    • /
    • 2001
  • Heat transfer coefficient were measured and new correlations were developed for two-phase heat transfer in a horizontal pipe for different patterns. Flow patterns were observed in a transparent circular pipe (2.54 cm I. D. and L/D=96) using an air/water mixture. Visual identification of the flow patterns was supplemented with photographic data and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air-water heat transfer experimental data with good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.

  • PDF

Velocity and Pressure Measurement of Channel Cavity Flow by PTV (PTV에 의한 채널캐비티 유동의 속도 및 압력계측)

  • Cho, D.H.;Kim, J.G.;Lee, Y.H.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.59-66
    • /
    • 1997
  • The present study adopted the PTV method for the velocity acquisition. The system consists of an image grabber built-in a personal computer and a laser-based sheet light projector and particle identification softwares. Velocity vectors are obtained, by PTV and they are used as velocity components for Poisson equation for pressure. Related boundary conditions and no-slip condition at solid wall and the linear velocity extrapolation on the upper side of cavity are well examined for the present study. For calculation of pressure, resolution of grid is basically $40{\times}40$ and 2-dimensional uniform mesh using MAC staggered grid is adopted. The result of experiment reveal that, newly suggested measuring method is capable of estimating pressure and velocity distribution of flow field reasonably.

  • PDF