• Title/Summary/Keyword: Wall Air Cavity

Search Result 77, Processing Time 0.023 seconds

Study on Al Hot Forming using Air Bulging (Air Bulging을 이용한 열간 알루미늄 성형에 관한 연구)

  • Park, D.H.;Kang, S.S.;Kim, B.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.145-147
    • /
    • 2009
  • The benefits of hydroforming technology are known as weight and cost savings through part consolidation and reduced post-forming processes such as welding and piercing. Hydroforming technology has some weaknesses in terms of process cycle times. But, as the hydraulic system and process designs are continuously developed, the cycle time is also reduced to acceptable and competitive levels. Hot air bulging is one of recently developed hydroforming techniques. Hot air bulging in order to further extend the forming degrees of Al lightweight material is investigated. A heated tube is placed in a heated die and sealed at the ends by sealing cylinders. The tube is subsequently expanded against the die cavity wall by internal pressure provided by air medium. The result of this study shows that axial feeding speed and air pressure have an effect on formability of Al air bulging at elevated temperature.

  • PDF

Correlations between anatomical variations of the nasal cavity and ethmoidal sinuses on cone-beam computed tomography scans

  • Shokri, Abbas;Faradmal, Mohammad Javad;Hekmat, Bahareh
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.103-113
    • /
    • 2019
  • Purpose: Anatomical variations of the external nasal wall are highly important, since they play a role in obstruction or drainage of the ostiomeatal complex and ventilation and can consequently elevate the risk of pathological sinus conditions. This study aimed to assess anatomical variations of the nasal cavity and ethmoidal sinuses and their correlations on cone-beam computed tomography (CBCT) scans. Materials and Methods: This cross-sectional study evaluated CBCT scans of 250 patients, including 107 males and 143 females, to determine the prevalence of anatomical variations of the nasal cavity and ethmoidal sinuses. All images were taken using a New Tom 3G scanner. Data were analyzed using the chi-square test, Kruskal-Wallis test, and the Mann-Whitney test. Results: The most common anatomical variations were found to be nasal septal deviation (90.4%), agger nasi air cell (53.6%), superior orbital cell(47.6%), pneumatized nasal septum(40%), and Onodi air cell(37.2%). Correlations were found between nasal septal deviation and the presence of a pneumatized nasal septum, nasal spur, and Haller cell. No significant associations were noted between the age or sex of patients and the presence of anatomical variations (P>0.05). Conclusion: Radiologists and surgeons must pay close attention to the anatomical variations of the sinonasal region in the preoperative assessment to prevent perioperative complications.

Review of the Flame Stabilization Techniques using Cavity (Cavity를 이용한 화염안정화 기술 리뷰)

  • Lee, Tae Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.104-111
    • /
    • 2016
  • The flame stabilization is one of the topics which have to be solved for the airbreathing propulsion systems, using the entering air which is supersonic velocity as an oxygen sources. Making a recirculation zone with an eddy flow, installed the reducing velocity devices such as the bluff body, is the typical method of the flame stabilization. Recently using a cavity flame stabilization at the wall is an emerging technique as an effective method which extends the stabilization zone, and the related research papers have been published on the flow separation and reattachment, pressures and oscillations including length/depth ratios in the cavities. Even though, still there are lots of topics to study more in the cavity flame stabilization field as the preceding techniques, as well as the research and the development of the airbreathing propulsion system itself.

The Effect of Combustion Process by Intensifying the Air Flow in Combustion Chamber of D.I. Diesel Engine (직접분사식 디젤기관의 연소실내 공기유동강화가 연소과정에 미치는 영향)

  • Bang, Joong-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.153-159
    • /
    • 2007
  • The performance of a direct-injection type diesel engine often depends on the strength of air flow in the cylinder, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the process of combustion in the cylinder was affected by the mixture formation process. In the present paper, high speed photography was employed to investigate the effectiveness of holes penetrated from the bottom of cavity wall to piston crown for some more useful utilization of air. The holes would function to improve mixing of fuel and air by the increase of air flow in the cylinder. The results obtained are summarized as follows, (1) Activated first of the combustion by shorten of ignition timing and rapid flame propagation (2) Raised the combustion peak pressure, more close to TDC the formation timing of peak pressure.

The Sensitivity Analysis of Thermal Expansion Breakage of Multi-layer Glazing in Building Envelope (건물 외피에 적용된 복층창의 열팽창 파손에 대한 민감도 분석 연구)

  • Yoon, Jong-Ho;Kim, Seung-Chul;Im, Kyung-Up;Oh, Myeong-Hwan
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.93-97
    • /
    • 2014
  • Curtain wall system of office buildings has recently become very common in Korea. As the multi-layer curtain glazing is exposed to outdoor environment, it is very subjected to direct environmental impact. Consequently, breakage and cracks of glazing due to heat expansion is frequently observed. This study explores various causes and aspects for destruction of multi-layer glazing. A sensitivity analysis was performed on the basis that thermal changes causes damage to the multi-layer glazing. Air temperature in air cavity within the multi-layer glazing was examined to find its effect on multi-layer glazing breakage. Analysis showed high deflection to depth ratio of 1:1.8 and that higher the aspect ratio, smaller is the deflection. Allowable pressure showed that the weakest value is for aspect ratio of 1:2.9. Sensitivity analysis by the area of the glazing showed that as area of glazing becomes higher, allowable pressure and deflection-depth ratio becomes smaller. For allowable pressure and allowable deflection-depth within air cavity, the glazing breakage occurred at least $107^{\circ}C$. The results from glazing breakage by thermal factor shows that it is hard to break the glazing with only an increase in air cavity temperature in multi-layer glazing applied in buildings.

Experimental Study on Fuel/Air Mixing using the Cavity in the Supersonic Flow (초음속 유동장 내의 공동을 이용한 연료/공기 혼합에 관한 실험적 연구)

  • Kim Chae-Hyoung;Jeong Eun-Ju;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.64-71
    • /
    • 2005
  • To achieve efficient supersonic combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between fuel and airstream. In former days, various injection concepts have been investigated. Cavity flow is the open type, that is, length-to-depth ratio L/D=4.8, aft ramp angle is $22.5^{\circ}$. An experimental study on a transverse cross jet injection into a Mach 1.92 supersonic main stream which flows over a cavity was carried out to investigate the effect of the momentum flux ratio(J), the jet interaction characteristics, and the pressure distribution in the combustor and using the primary diagnostics : schlieren visualization and wall static pressure measurements. Fuel penetration height and jet interaction characteristics depend strongly on the momentum flux ratio.

  • PDF

Optimizations of Air-trap Locations in the Speaker Encloser of Mobile Phone by Injection Molding Simulations (사출성형 시뮬레이션에 의한 휴대폰 스피커 인클로저의 에어트랩 위치 최적화)

  • Park, Ki-Yoon;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.85-90
    • /
    • 2011
  • In this paper a design procedure via computer-aided molding simulation is presented to optimize the air-trap locations in a speaker encloser of mobile phone. The molding flow simulation reveals that the race-tracking phenomenon is the dominant feature in the current mold design. In obtaining an optimal filling pattern, the local modifications of the wall thickness such as in a flow leader attachment are considered as the primary control factor, and both the gate position and the filling time become the secondary control factor. In the one-at-a-time approach, the last location to be filled in the mold cavity could be successfully moved to the extremities of the part, allowing a natural ventilation of entrapped air through the mold parting plane.

Experimental study of compression waves propagating porous walls (다공벽을 전파하는 압축파의 실험적 연구)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4036-4043
    • /
    • 1996
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates along the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. In the purpose of the impulsive noise reduction, the present study tested the effect of porous walls on the compression wave propagating into a model tunnel. Experimental results were obtained using a shock tube with an open end. The results showed that the cavity/porous wall is very effective for the compression wave with a large nonlinear effect. The porosity of 30% is most effective for attenuation and pressure gradient reduction of the compression wave front. Also the impulsive noise reduction increases with increasing the length and height of the cavity, compared with the tunnel equivalent diameter.

Sound Transmission Loss of Double Panels(I) : A Double Wall with Air Cavity (이중판의 차음손실 I)

  • 강현주;김현실;김재승;김상렬
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.945-952
    • /
    • 1997
  • This paper shows the feasibility of the suggestion that the angle distribution of incident sound to panels might be gaussian, instead of the conventional uniform distribution in the analysis of transmission loss of panels. To prove the suggestion, the problems with the diffuse sound field in a reverberation room are examined by case studies and the comparision of the prediction with the measurement of sound transmission loss of walls are performed. The results of the comparision show good agreement between the two values.

  • PDF

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

  • Kim, Hyun-Sil;Kim, Jae-Seung;Lee, Seong-Hyun;Seo, Yun-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.894-903
    • /
    • 2014
  • Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.