• 제목/요약/키워드: Walking-speed

검색결과 617건 처리시간 0.028초

Effects of Different Shoe Heel Heights on the Kinematic Variables of the Lower Extremities during Walking on Slopes by healthy adult women

  • Yang, Yong-pil
    • 대한물리의학회지
    • /
    • 제14권3호
    • /
    • pp.21-27
    • /
    • 2019
  • PURPOSE: This study examined the changes in the kinematic variables during walking on a downhill ramp according to the shoe heel height. METHODS: The subjects were 10 adult women with no history of musculoskeletal disorders who agreed to participate in the study. Data were collected using a motion analysis system (VICON) consisting of six infrared cameras. The slope was 120 cm in width, 200 cm in length, and 15 in inclination. To confirm the change in gait parameters (stride length, gait speed) and lower extremity joint angle according to the heel heights of the shoes, flat, 5 cm, and 10 cm heel shoes were prepared and walked alternately. RESULTS: As a result, both the stride length and walking speed showed significant differences according to the heel height between flat and 10 cm (p<.05). In the sagittal plane, there was no significant difference in the hip joint and knee joint, but a significant difference was observed in all events in the ankle joint on all heel heights (p<.05). In particular, the heel strike and mid stance events showed significant differences among all height conditions (p<.05). No significant difference was observed in any of the joint angle changes in the frontal plane (p>.05). CONCLUSION: As the shoe heel height increased, the instability increased and efforts to secure the stability were made, leading to a shortened stride length, walking speed, and angle of the ankle joint.

Comparison of the Effects of Talus Stabilization Taping and Kinesio Taping on Balance and Walking Speed in Persons with Chronic Stroke

  • Hyeongmin Lee;Mi Young Lee;Yijung Chung
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권4호
    • /
    • pp.546-552
    • /
    • 2022
  • Objective: The purpose of this study was to compare walking speed and balance abilities according to various taping methodsin patients with stroke. Design: Cross-sectional study Methods: Twenty patients with stroke who were hospitalized at a rehabilitation hospital were allotted to the either the talus stabilization, Kinesio or sham taping, or barefoot conditions by drawing lots. Assessment tools used were the Functional Reach Test(FRT), Timed Up and Go test(TUG), One-Legged Stance Test (OLST), and the 10-Meter Walk Test(10MWT).After each test was measured three times, the mean values of each test was used for analysis. Results: Significant results were observed with thetalus stabilization and Kinesio taping groupcompared to the barefoot and sham taping method for theFRT,TUG, the OLST, and the 10MWT(p<0.05). Also, significant differences in the resultswere seen in the OLST, TUG, and the 10MWTwith the talus taping compared to the Kinesio taping method(p<0.05). Conclusions: The use oftalus stabilization taping applied to the ankle of patients with stroke was more effective for balance and walking ability improvement than Kinesio taping through the correction of an abnormal position of the talus.It is considered that these methods of taping can be applied effectively in the clinic.

경 두개 직류자극이 뇌졸중 환자의 시간적, 공간적 보행능력에 미치는 영향 (Effect of Trans cranial Directed Current Stimulus on Temporal and Spatial Walking Capacity for Hemiparalysis Patients)

  • 이연섭;전현주
    • 대한물리치료과학회지
    • /
    • 제29권3호
    • /
    • pp.75-84
    • /
    • 2022
  • Background: This study was to investigate the effect of non-invasive transcranial direct current stimulation due to hemiplegic patients due to stroke on temporal and spatial gait ability. Design: Randomized sham controlled trial. Methods: For the study method, 42 patients with hemiplegia due to stroke were randomly assigned to 14 patients each, and the general walking group, tDCS walking group, and tDCS (sham) walking group were subjected to 5 times a week, 30 minutes a day, and 6 weeks. In the temporal gait variables of hemiplegic patients due to stroke, the effect of the gait time, gait cycle, single support, double support, swing phase, stance phase, gait speed, cadence were measured. In spatial variables, one step length and one step length were measured. Results: As a result of the study, the EG group significantly increased in the step time, gait velocity, and cadence of the paralysis side in the comparison of temporal walking variables between groups according to the application of tDCS of walking ability in hemiplegic patients due to stroke patients(p<.05). In the change in spatial walking variables between groups according to the application of tDCS, the step length and stride length of the EG group showed a significant increase. Both the comparison of temporal and spatial symmetry walking variables between groups according to tDCS application was not significant(p>.05) Conclusion: As a result, tDCS has an effective effect on the improvement of the gait ability of stroke patients. In particular, it is an effective method of physical therapy that can improve the cadence and speed of gait, which can be combined with the existing gait training to effectively increase the gait of hemiplegia due to stroke patients.

에너지보행과 일반보행에서 몸통운동의 특성 비교 (The Comparison of Characteristics of Trunk Motion between Energy Walking and Normal Walking)

  • 신제민
    • 한국운동역학회지
    • /
    • 제17권3호
    • /
    • pp.133-145
    • /
    • 2007
  • The purpose of this paper was to compare of difference between energy walking and normal walking. Subjects were selected 8 male undergraduates. The kinematic variables of a pelvis and a thorax were analysed at the take off and contact with 3d cinematography. In addition to the variables, the phase plot angle was calculated in order to definite characteristics in the phase space. The pelvic angle and angular velocity showed significant differences in the flexion/extension between two walking patterns. The pelvic angle and angular velocity were increasing when walking speed was increasing and magnitude of the variables of energy walking was larger than corresponding values for normal walking. On the other hand, the thoracic angle demonstrated significant differences in the flexion/extension and rotation between two walking patterns. The angles of energy walking were smaller in the flexion/extension and were larger in the rotation than the angle of normal walking. The kinematic characteristics of energy walking were also showed clearly significant differences in the range of motion and the relative angle of the trunk. The angle of phase plot only showed demonstrated a significant difference in the rotation at contact between the two walking patterns.

햅틱 연동 능동 보행보조장치 개발 (Development of an Active Gait Assistive Device with Haptic Information)

  • 표상훈;오민균;윤정원
    • 제어로봇시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.553-559
    • /
    • 2015
  • The purpose of this research is to develop a gait assistive device to enhance the gait stability and training efficiency of stroke patients. The configuration of this device is mainly composed of a motored wheel and a single cane whose lower end is attached to a motored wheel frame. A patient can feel haptic information from continuous ground contact from the wheel while walking through the grip handle. In addition, the wheeled cane can avoid using excessive use of the patient's upper limb for weight support and motivate the patient to use a paralyzed lower limb more actively. Moreover, the proposed device can provide intuitive and safe user interaction by integrating a force sensor and a tilt sensor equipped to the cane frame, and a switch sensor at the cane's handle. The admittance control has been implemented for the patient to change the walking speed intuitively by using the interaction forces at the handle. A hemi-paretic stroke patient participated in the walking assistive experiments as a pilot study to verify the effectiveness of the proposed haptic cane system. The results showed that the patient could improve walking speed and muscle activations during walking with a constant speed mode of the haptic cane. Moreover, the patient could maintain the preferred walking speeds and gait stability regardless of the magnitude of resistance forces with the admittance control mode of the haptic cane. The proposed robotic gait assistive device with a simple and intuitive mechanism can provide efficient gait training modes to stroke patients with high possibilities of widespread utilizations.

리듬청각자극을 동반한 경사 트레드밀 보행훈련이 뇌졸중 환자의 균형 및 보행에 미치는 영향: 예비연구 (Effects of Inclined Treadmill Walking Training with Rhythmic Auditory Stimulation on Balance and Gait in Stroke Patients: A pilot study)

  • 윤성경;강순희
    • 대한통합의학회지
    • /
    • 제3권4호
    • /
    • pp.69-78
    • /
    • 2015
  • Purpose: The purpose of this study was to identify whether inclined treadmill gait training with rhythmic auditory simulation (RAS) could improve on balance and gait in stroke patients. Method: Fifteen stroke patients who had agreed with the study were allocated to the group 1(n=5), group 2(n=5), or group 3(n=5). The group 1, group 2 and group 3 performed RAS with inclined treadmill gait training, inclined treadmill gait training and treadmill without incline gait training respectively for 3 weeks (30 minutes per session, 5 times in a week). The balance was assessed using Timed Up & Go (TUG) and Berg Balance Sale (BBS), and the gait was evaluated using 6 Minutes Walking Test (6MWT) and spatio-temporal walking variables as walking speed, cadence, Single Limb Support of affected side(SLS) and Symmetric Index(SI) before and after training. Result: Both the group 1 and group 2 showed significant improvement after training in all variables of balance and gait. The group 3 showed significant improvement in TUG values, 6MWT values, walking speed, cadence and SI. The changes in the group 1 were significantly greater in all dependent variables of balance and gait than those of the group 2 and group 3. The changes in the group 2 were significantly greater in TUG values, BBS scores, 6MWT values, walking speed, and cadence than those of the group 3. Conclusion: The result of this study show inclined treadmill gait training with RAS is more effective to improve balance and gait in stoke patients than inclined treadmill or general treadmill gait training without RAS.

무게평형진자를 가진 4족 로봇의 보행 실험 (Walking test of a quadruped robot with weight balancing oscillator)

  • 유재명;오상관;김영탁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.446-449
    • /
    • 2002
  • Quadruped walking robot requires dynamic control to keep its stability in high speed walking. To keep its walking stability by control of only legs' Joint angle lowers energy efficiency. It is known that an animal or a human use the moving of the mass center of one's upper body to keep the stability. We have developed a quadruped walking robot with weight balancing oscillator that have high energy efficiency. In this study, walking tests are performed for the robot to verify the validity of the weight balancing oscillator.

  • PDF

보행로부트 다리부의 기구학적 설계 (A Kinematic Design of the Leg of the Walking Machine)

  • 윤용산;홍형주
    • 대한전기학회논문지
    • /
    • 제38권12호
    • /
    • pp.1007-1013
    • /
    • 1989
  • This paper describes the procedure of kinmatic design of a quadruped walking machine which has better mobility and higher energy efficiency than the wheeled or tracked vehicles on the rough terrain. Specifically, this paper puts much emphasis on the procedure and its rationality of the design of the leg which is the key mechanical element of the walking robot. And it shows the appropriateness of the selected mechanism and the design method through the walking experiment of the prototype machine built upon the resulted design. The pantograph mechanisms are proved to be acceptable as the leg of the walking machine from the experiment even though it is indicated that the walking speed and the body deflection should be improved further. This paper also describes the problems of the realization of the gait the frictional effects along with their causes in the walking experiment.

  • PDF

균형추를 장착한 4족 로봇의 보행 안정성에 관한 연구 (A Study on the Walking Stability of the Quadruped Robot with WBO)

  • 최기훈;김영탁;유재명
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.118-126
    • /
    • 2005
  • There are many types of walking robots in the world. For dynamic walking of the robots it is necessary to keep its dynamic stability. The dynamic stability is influenced by the position of ZMP (zero moment point). In this paper we study the control of the ZMP position of walking robot. For experiment we developed a quadruped robot and analyzed the dynamic stability of the robot. Developed robot has 2 joints at each leg and WBO (weight balancing oscillator) on the body of the robot. The WBO is designed to move linearly from side to side when the robot walks dynamically. Walking test was performed to verify the validity of the proposed methods. Especially we showed that the dynamic stability of the robot can be improved without sacrifice of the walking speed by control the WBO.

Correlation Between Executive Function and Walk While Crossing Over an Obstacle Under Different Gait Phases

  • Seung Min Lee;Han Suk Lee
    • 대한치매학회지
    • /
    • 제22권4호
    • /
    • pp.139-147
    • /
    • 2023
  • Background and Purpose: Dual walking task such as crossing over an obstacle may serve as an excellent tool for predicting early cognitive decline. Thus, this study aimed to investigate correlation between walking while crossing over an obstacle and executive functions under different gait phases to validate the use of walking with an obstacle for predicting early cognitive decline. Methods: A cross-sectional study was conducted on 48 elderly individuals from 2 day-care centers and 3 welfare-centers in Seoul and Gyeonggi, Korea. Executive function tests (Trail Making Test, Stroop test) and dual walking tests (gait speed, cadence, stance time, gait cycle time) were performed and compared using partial correlation analysis. Results: There were significant correlations between executive function and most of the gait variables (stance time, cadence, and gait cycle time) (p<0.05) when crossing over an obstacle while walking. Especially, stance time exhibited significant correlations with most executive functions (p<0.05). Conclusions: When evaluating executive function during walking with an obstacle, post-obstacle-crossing phase and stance time need to be observed.