• Title/Summary/Keyword: Walking direction

Search Result 208, Processing Time 0.023 seconds

Optimized Walking Will Recognizing System of the Walking Aid with the Fuzzy Algorithm (퍼지 알고리즘을 이용한 보행보조기의 최적화된 보행 의지 파악 시스템)

  • Kong, Jung-Shik;Lee, Dong-Kwang;Nam, Yun-Seok;Lee, Bo-Hee;Lee, Eung-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.692-699
    • /
    • 2008
  • This paper describes optimal operation method using recognition of walker's will for a robotic walker. Recently, walking aid system has been required according to the increase of elder and handicapped person. However, most of walking aid system don't have actuator for its movement. Unfortunately, standard frames have weakness for the movement to upward/download direction of slope. So, active type walking aids are interested, but it is not easy to control. In this paper, we adapt user's will system that can recognize walking direction and speed. First, FSR(Force Sensing Register) is applied to measure user's will to walk. And then, fuzzy algorithm is used for determining optimal wheel velocity and direction of the walking aid. From the result, walking aid can move smoothly and safely following the user's will. The walking aid can help user to walk more optimally. Here, all the processes are verified experimentally in the real world.

Real-time Footstep Planning and Following for Navigation of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2142-2148
    • /
    • 2015
  • This paper proposes novel real-time footstep planning and following methods for the navigation of humanoid robots. A footstep command is defined by a walking direction and step lengths for footstep planning. The walking direction is determined by a uni-vector field navigation method, and the allowable yawing range caused by hardware limitation is considered. The lateral step length is determined to avoid collisions between the two legs while walking. The sagittal step length is modified by a binary search algorithm when collision occurs between the robot body and obstacles in a narrow space. If the robot body still collides with obstacles despite the modification of the sagittal step length, the lateral step length is shifted at the next footstep. For footstep following, a walking pattern generator based on a 3-D linear inverted pendulum model is utilized, which can generate modifiable walking patterns using the zero-moment point variation scheme. Therefore, it enables a humanoid robot to follow the footstep command planned for each footstep. The effectiveness of the proposed method is verified through simulation and experiment.

Estimating Human Walking Pace and Direction Using Vibration Signals (진동감지를 이용한 사용자 걸음걸이 인식)

  • Jeong, Eunseok;Kim, DaeEun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.481-485
    • /
    • 2014
  • In service robots, a number of human movements are analyzed using a variety of sensors. Vibration signals from walking movements of a human provide useful information about the distance and the movement direction of the human. In this paper, we measure the intensity of vibrations and detect both human walking pace and direction. In our experiments, vibration signals detected by microphone sensors provide good estimation of the distance and direction of a human movement. This can be applied to HRI (Human-Robot Interaction) technology.

Aperiodic Gait Control based on Periodic Gait fo Teleoperation of a Quadruped Walking Robot (4족 보행로봇의 원격조종을 위한 주기 걸음새 기반의 비주기적 걸음새 제어)

  • 최명호;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.397-397
    • /
    • 2000
  • This paper presents a gait control scheme for teleoperation of a quadruped-walking robot. In teleoperation of a walking robot, an operator gives a real-time generated velocity command to a walking robot instead of a moving trajectory. When the direction of the velocity command is changed, the periodic gait is not available because this requires an initial foot position . This paper proposes the aperiodic gait control scheme that can converge to a periodic gait Simulation results are given to demonstrate the efficiency of the proposed control scheme.

  • PDF

Development of Vision based Autonomous Obstacle Avoidance System for a Humanoid Robot (휴머노이드 로봇을 위한 비전기반 장애물 회피 시스템 개발)

  • Kang, Tae-Koo;Kim, Dong-Won;Park, Gwi-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.161-166
    • /
    • 2011
  • This paper addresses the vision based autonomous walking control system. To handle the obstacles which exist beyond the field of view(FOV), we used the 3d panoramic depth image. Moreover, to decide the avoidance direction and walking motion of a humanoid robot for the obstacle avoidance by itself, we proposed the vision based path planning using 3d panoramic depth image. In the vision based path planning, the path and walking motion are decided under environment condition such as the size of obstacle and available avoidance space. The vision based path planning is applied to a humanoid robot, URIA. The results from these evaluations show that the proposed method can be effectively applied to decide the avoidance direction and the walking motion of a practical humanoid robot.

The Studies on the Foot Stability and Kinesiology by Direction of Carry a Load during Gait (보행 시 부하의 위치에 따른 발의 안정성 및 운동학적 분석에 관한 연구)

  • Lee, Sang-Yeol;Bae, Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • Purpose: This study examined how the direction of carrying a load affects the foot stability and kinesiology while walking. Methods: The heel rotation, Hallux stiffness, foot balance, metatarsal load, toe out angle, subtalar joint flexibility were measured in 40 adults (men and women) who carried a load back and forth, walking on a 2-meter-long board. The measurement was carried out three times and the mean of the measurements was used to compare the difference between the front, back and the condition without a load. Results: While walking, heel rotation and hallux stiffness occurred most when a front load was applied compared to a back load or no load condition (p<0.05). A metatarsal load also appeared to be the highest with the frond load, but there was no significant difference in the balance of the whole foot. Both the toe out angle and subtalar joint flexibility appeared to increase significantly (p<0.05). Conclusion: Applying the front load causes subtalar joint instability and increases the plantar foot pressure imbalance during walking.

  • PDF

Gait Selection According to Trajectory Planning for Quadrupedal Walking Macine (4족 보행기의 경로계획에 따른 걸음걸이 선택)

  • 이종길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.151-155
    • /
    • 1996
  • In this paper, the continuous motion of a quadrupedal walking machine was studied. The motion planning which is able a walking machine body to precisely follow a three-dimensional curve was developed. A three-dimensional curve was designed based on Bezier curve and obstacle avoidance considerations. Due to the arbitrary motion direction during walking, special strategies of gaits were developed to ensure positive stability. The gait strategies were based on wave and wave-crab gait.

  • PDF

Development of Android Application for Wireless Control of Omnidirectional Biped Walking of Humanoid Robot (휴머노이드 로봇의 전방향 이족보행 원격제어를 위한 안드로이드 애플리케이션 개발)

  • Park, GyuYung;Yun, JaeHun;Choi, YoungLim;Kim, Jong-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.223-231
    • /
    • 2014
  • Humanoid robot is the most suitable robot platform for effective human interaction and various intelligent services. The present work addresses development of real time wireless control application of humanoid robot's forward and backward walks, and turning in walking. For convenience of human users, the application is developed on Android OS (Operating System) working on his or her smartphone. To this end, theoretic background on various-directional biped walking is proposed based on joint trajectories for forward walking, which have been shaped with a global optimization method. In this paper, backward walking is scheduled by interchange of angles and angular velocities and additional change of signs in angular velocities at all the via-points connecting cubic polynomial trajectories. Turning direction in walking is also implemented by activating the transversal hip joint initially located in the support leg in two stages. After validation of the proposed walking schemes with Matlab simulator, a smartphone application for the omnidirectional walking has been developed to control a humanoid robot platform named DARwIn-OP interconnected via Wi-Fi. Experiment result of the present wireless control of a humanoid robot with smartphone is successful, and the application will be released in application market near future.

Effects of Rotation Direction during Curved Walking on Gait Parameters in Stroke Patients (뇌졸중 환자의 회전 보행 시 회전 방향이 보행 특성에 미치는 영향)

  • Jung, Kyeoung-Man;Joo, Min-Cheol;Jung, Yu-Jin
    • Quality Improvement in Health Care
    • /
    • v.23 no.2
    • /
    • pp.11-20
    • /
    • 2017
  • Purpose: The purpose of this study was to determine the effects of rotation direction during curved walking on gait parameters in stroke patients. Methods: A group of thirty subjects with stroke (Berg Balance Scale score${\geq}41$ were fifteen, Berg Balance Scale score${\leq}40$ were fifteen) were enrolled in this study. Testing indications included two directions for rotation in each subject. These indications were for rotation toward the affected and unaffected side in stroke patients. The gait speed, affected side single support duration, affected side double support duration were recorded. The obtained data were analyzed by using paired t-test and Wilcoxon signed rank test in the group that are below and above 40 points of Berg Balance Scale score. Results: There was significant increase affected side single support duration was turned the affected side in stroke patients that presented a Berg Balance Scale score${\geq}41$ (p<.05). There were significant increase gait speed, affected side single support duration, and significant decrease affected side double support duration while subjects were turned the affected side in stroke patients that presented a Berg Balance Scale score${\leq}40$ (p<.05). Conclusion: This result may be effective to rotate in the paralyzed direction to improve the ability of the paralyzed lower limb to gain weight during gait training for stroke patients with a Berg Balance Scale score<40. Therefore, walking training program for hemiplegic patient needs to be suggested in the direction of turning for suitable balance ability.

Experimental Study on Modifiable Walking Pattern Generation for Handling Infeasible Navigational Commands

  • Hong, Young-Dae;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2368-2375
    • /
    • 2015
  • To accommodate various navigational commands, a humanoid should be able to change its walking motion in real time. Using the modifiable walking pattern generation (MWPG) algorithm, a humanoid can handle dynamic walking commands by changing its walking period, step length, and direction independently. If the humanoid is given a command to perform an infeasible movement, the algorithm substitutes the infeasible command with a feasible one using binary search. The feasible navigational command is subsequently translated into the desired center-of-mass (CM) state. Every sample time CM reference is generated using a zero-moment-point (ZMP) variation scheme. Based on this algorithm, various complex walking patterns can be generated, including backward and sideways walking, without detailed consideration of the feasibility of the navigational commands. In a previous study, the effectiveness of the MWPG algorithm was verified by dynamic simulation. This paper presents experimental results obtained using the small-sized humanoid robot platform DARwIn-OP.