• Title/Summary/Keyword: Walking Stability

Search Result 331, Processing Time 0.023 seconds

Tracking Control for Biped Robot (이족 보행 로봇을 위한 추적 제어)

  • 이용권;박종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • In this paper, an optimal trunk trajectory for stable walking of biped robots is expressed as a simple differential equation, which is then solved by numerical methods. We used ZMP (Zero Moment Point), the virtual total ground reaction point within the region of the supporting food, as the criterion of stability of biped robot walking. If the ZMP is located outside of the stable region in dynamic walking, biped robots fall down. The biped robot considered in this paper consists of two legs and a trunk. The trajectories of the two legs and the ZMP of the biped robot are determined such that they are similar ti those of a human. Based upon those trajectories, the trunk trajectory is solved by numerically integrating differential dynamic equations. Leg motions are controlled by the computed torque control method. The effectiveness of control algorithm as well as the trajectories is confirmed by computer simulations.

  • PDF

Upstairs Walking of a Biped Robot Using Genetic Algorithm (유전 알고리듬을 이용한 이족 보행로봇의 계단 오르기 수행)

  • Kim, Eun-Su;Kim, Tae-Gyu;Kim, Jong-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1059-1060
    • /
    • 2008
  • In this paper, using a genetic algorithm, consisting of six to seven degrees of freedom links, walking robot to up-stair that can walk to optimize energy and stability to generate. Walking robot to up-stairs of the four-step segmentation of the various situations that match the pace and pattern so that it can generate. It also generated using genetic algorithms to test for Matlab into the Robot Simulation of the humanoid experiment was used.

  • PDF

A Study on the Gait Control of a 4-Legged Walking Robot on Irregular Terrain (부정지형에서 4각 보행로보트의 걸음새 제어에 관한 연구)

  • Seong, Il;Moon, Young-Hyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.7
    • /
    • pp.723-733
    • /
    • 1988
  • In this paper, A model of 4-legged walking robot is presented by investigating the gait of animals, which can walk with maintaining static stability on irregular terrain. Kinematices of the model robot was analyzed by geometric approach, and a gait control algorithm is proposed for the effective walking on irregular terrain. Terrains are classified into 4 types in order to study the terrain adaptability of the proposed algorithm and it is simulated for each type of terrain.

  • PDF

Energy Optimization for The Walking of Biped Robot (이족보행로봇의 보행을 위한 에너지 최적화)

  • Kim, Jong-Tae;Choi, Sang-Ho;Lim, Sun-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2339-2341
    • /
    • 1998
  • This paper is concerned with an energy optimization for the walking of IWR biped robot. The movement of balancing joints are determined by ZMP(Zero Moment Point) and dynamic properties caused by motion of a swing leg. Therefore, ZMP positions have an important role in walking and guarnateeing the stability of a robot. A genetic algorithm is utilized for solving this problem and finding ZMP with a minimum energy at each sampling time during the walk. In this study, we performed an energy optimization with desired ZMP trajectories and motion of balancing joints.

  • PDF

Hybrid Sliding Mode Control of 5-link Biped Robot in Single Support Phase Using a Wavelet Neural Network (웨이블릿 신경망을 이용한 한발지지상태에서의 5 링크 이족 로봇의 하이브리드 슬라이딩 모드 제어)

  • Kim, Chul-Ha;Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1081-1087
    • /
    • 2006
  • Generally, biped walking is difficult to control because a biped robot is a nonlinear system with various uncertainties. In this paper, we propose a hybrid sliding-mode control method using a WNN uncertainty observer for stable walking of the 5-link biped robot with model uncertainties and the external disturbance. In our control system, the sliding mode control is used as main controller for the stable walking and a wavelet neural network(WNN) is used as an uncertainty observe. to estimate uncertainties of a biped robot model, and the error compensator is designed to compensate the reconstruction error of the WNN. The weights of WNN are trained by adaptation laws that are induced from the Lyapunov stability theorem. Finally, the effectiveness of the proposed control system is verified through computer simulations.

Fault Tolerant Straight-Line Gaits of a Quadruped Robot with Feet of Flat Shape (평판 발을 가지는 사족 보행 로봇의 내고장성 걸음새)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.141-148
    • /
    • 2012
  • This paper proposes fault tolerant gaits of a quadruped robot with feet of flat shape. Fault tolerant gaits make it possible for a legged robot to continue static walking against a leg failure. In the previous researches, it was assumed that a legged robot had feet that have point contact with the surface. When the robot is endowed with feet having flat shape, fault tolerant gaits can show better performance compared with the former gaits, especially in terms of the stride length and gait stability. In this paper, fault tolerant gaits of a quadruped robot against a locked joint failure are addressed in straight-line motion and crab walking, respectively.

CPG-based Adaptive Walking for Humanoid Robots Combining Feedback (피드백을 결합한 CPG 기반의 적응적인 휴머노이드 로봇 보행)

  • Lee, Jaemin;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.683-689
    • /
    • 2014
  • The paper introduces dynamic generation technique of foot trajectories for humanoid robots using CPG(Central Pattern Generator) and proposes adaptive walking method for slope terrains combining a feedback network. The proposed CPG based technique generates the trajectory of foot in the Cartesian coordinates system and it can change the step length adaptively according to the feedback information. To cope with variable slope terrains, the sensory feedback network in the CPG are designed using the geometry relationship between foot position and body center position such that humanoid robot can maintain its stability. To demonstrate the effectiveness of the proposed approach, the experiments on humanoid robot Nao are executed in the Webot simulation. The performance and motion features of the CPG based approach are compared and analyzed focusing on the adaptability in slope terrains.

A Study on the Gait Optimization of a Biped Robot (이족보행로봇의 걸음세 변화에 관한 최적화 연구)

  • Noh, Kyung-Kon;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2405-2407
    • /
    • 2003
  • This study deals with the gait optimization of via points on biped robot. ZMP(Zero Moment Point) is most important index in a biped robot's dynamic walking stability. To stable walking of a biped robot, legs's trajectory and a desired ZMP trajectory is required, balancing weight's movement is solved by FDM(Finite Difference Method). In this study, optimal index is defined to dynamically static walking of a biped robot, and optimization of via points is applied by GA(Genetic Algorithm).

  • PDF

The Differences of the Normalized Jerk According to Shoes, Velocity and Slope During Walking (보행시 신발, 속도, 그리고 경사도에 따른 정규 저크의 차이)

  • Han, Young-Min;Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae;Yi, Kyung-Ok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate normalized jerk according to shoes, slope, and velocity during walking. Eleven different test subjects used three different types of shoes (running shoes, mountain climbing boots, and elevated forefoot walking shoes) at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 2.11, 2.33m/sec) and gradients(0, 3, 6, 10 degrees) on a treadmill. Since there were concerns about using the elevated forefoot shoes on an incline, these shoes were not used on a gradient. Motion Analysis (Motion Analysis Corp. Santa Rosa, CA USA) was conducted with four Falcon high speed digital motion capture cameras. Utilizing the maximum smoothness theory, it was hypothesized that there would be differences in jerk according to shoe type, velocity, and slope. Furthermore, it was assumed that running shoes would have the lowest values for normalized jerk because subjects were most accustomed to wearing these shoes. The results demonstrated that elevated forefoot walking shoes had lowest value for normalized jerk at heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass at most walking speeds. For most gradients and walking speeds, hiking boots had smaller medio-lateral directional normalized jerk at ankle than running shoes. These results alluded to an inverse ratio for jerk at the heel and at the COM for all types of shoes. Furthermore, as velocity increased, medio-lateral jerk was reduced for all gradients in both hiking boots and running shoes. Due to the fragility of the ankle joint, elevated forefoot walking shoes could be recommended for walking on flat surfaces because they minimize instability at the heel. Although the elevated forefoot walking shoes have the highest levels of jerk at the COM, the structure of the pelvis and spine allows for greater compensatory movement than the ankle. This movement at the COM might even have a beneficial effect of activating the muscles in the back and abdomen more than other shoes. On inclines hiking boots would be recommended over running shoes because hiking boots demonstrated more medio-lateral stability on a gradient than running shoes. These results also demonstrate the usefulness of normalized jerk theory in analyzing the relationship between the body and shoes, walking velocity, and movement up a slope.

The Effect of Pelvic Tilt Exercise with Changing the Body Position on Foot Contact Pattern in Hemiplegic Patients (자세에 따른 골반경사운동이 편마비 환자의 발 접촉양상에 미치는 효과)

  • Jang, Sang-Hun;Park, Soo-Jin;Kim, Min-Hee;Kim, Joong-Hwi;Kim, Jin-Sang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.3
    • /
    • pp.445-453
    • /
    • 2010
  • Purpose : The purpose of this study was to investigate the effect of pelvic tilt exercise with changing the body position on foot contact pattern in the hemiplegic patients. Methods : Thirty seven hemiplegic patients were randomly divided 3 groups; control group (CG), sitting exercise group (SIEG) and standing exercise group (STEG). F-mat system and F-scan system were used for the measurement of foot contact pattern of hemiplegic side in walking. Data were analyzed statistically using paired t-test and one-way ANOVA. Results : The results were as follows : 1) Contact area of CG and SIEG were not significant difference in walking. Contact area of STEG was significant increased in walking. 2) Anteroposterior distance of COP of SIEG and STEG were significant increased in walking. Conclusion : These results suggest that pelvic tilt exercise in sitting and standing position are effective in the improvement of Anteroposterior distance of COP and gait stability are increased in only standing position.