• Title/Summary/Keyword: Wald Test Statistic

Search Result 21, Processing Time 0.023 seconds

Test of Homogeneity Baseon Complex Survey Data : Discussion Based on Power of Test

  • Heo, Sun-Yeong;Yi, Su-Cheol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.609-620
    • /
    • 2005
  • In the secondary data analysis for categorical data, situations often arise in which the estimated cell variances are available, but not the full matrix of variances. In this case researchers are often inclined to use Pearson-type test statistics for homogeneity. However, for a complex sample observed cell proportions are not distributed as multinomial and Pearson-type test statistic generally is not distributed asymptotically as chi-square distribution. This paper evaluates powers for Wald test and Pearson-type test and the first order corrected test of Pearson-type test for homogeneity. The resulting power curves indicate that as the misspecification effect increases, the amount of inflation of significance level and the loss of power Pearson-type test are getting more severe.

  • PDF

Tests for equivalence/non-inferiority based on odds ratio in matched-pair design

  • Go, Hye-Jeong;Lee, Jae-Won
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.319-324
    • /
    • 2003
  • 본 논문에서는 matched-pair design에서의 두 처리간 동등성/ 비열등성 검정에 대해 고려하였다. 기존에 비율차이나 risk ratio관점에서 동등성/비열등성 검정을 시행한 것과는 달리, 본 논문에서는 odds ratio에 기초하여 두 가지 검정통계량을 유도하였다. (1) constrained maximum likelihood estimator(mle)를 이용한 fieller type 통계량 (2) 제약없이 구한 mle를 사용한 wald-type 통계량). 비율 차이나 risk ratio에 기초한 기존의 통계적 방법들(비율차이에 근거한 (3) score-type 통계량과 (4) wald-type 통계량, risk ratio에 기초한 (5) fieller-type 통계량과 (6) wald-type 통계량)과 본 논문에서 제시한 두가지 통계량의 성능을 비교하기 위해 모의실험을 시행하였다. 모의실험 결과, 본 논문에서 제안한 constrained mle를 사용한 fieller type 통계량은 empirical type I error 측면에서 매우 만족스러운 결과를 보이고 있으며, 특히 비대각 셀의 확률이 작아질 경우에도 안정적인 성능을 보여준다.

  • PDF

A Robust Wald-Ttype Test in Linear Regression

  • Nam, Ho-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.507-520
    • /
    • 1997
  • In this paper we propose a robust Wald-type test which is based on an efficient Mallows-type one-step GM-estimator. The proposed estimator based on the weight function of Song, Park and Nam (1996) has a bounded influence function and a high breakdown point. Under some regularity conditions, we compute the finite-sample breakdown point, and drive asymptotic normality of the proposed estimator. The level and power breakdown points, influence function and asymptotic distribution of the proposed test statistic are main points of this paper. To compare the performance of the proposed test with other tests, we perform some Monte Carlo simulations.

  • PDF

Effect of Bias on the Pearson Chi-squared Test for Two Population Homogeneity Test

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.241-245
    • /
    • 2012
  • Categorical data collected based on complex sample design is not proper for the standard Pearson multinomial-based chi-squared test because the observations are not independent and identically distributed. This study investigates effects of bias of point estimator of population proportion and its variance estimator to the standard Pearson chi-squared test statistics when the sample is collected based on complex sampling scheme. This study examines the effect under two population homogeneity test. The standard Pearson test statistic can be partitioned into two parts; the first part is the weighted sum of ${\chi}^2_1$ with eigenvalues of design matrix as their weights, and the additional second part which is added due to the biases of the point estimator and its variance estimator. Our empirical analysis shows that even though the bias of point estimator is small, Pearson test statistic is very much inflated due to underestimate the variance of point estimator. In the connection of design-based variance estimator and its design matrix, the bigger the average of eigenvalues of design matrix is, the larger relative size of which the first component part to Pearson test statistic is taking.

Effect of complex sample design on Pearson test statistic for homogeneity (복합표본자료에서 동질성검정을 위한 피어슨 검정통계량의 효과)

  • Heo, Sun-Yeong;Chung, Young-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.757-764
    • /
    • 2012
  • This research is for comparison of test statistics for homogeneity when the data is collected based on complex sample design. The survey data based on complex sample design does not satisfy the condition of independency which is required for the standard Pearson multinomial-based chi-squared test. Today, lots of data sets ara collected by complex sample designs, but the tests for categorical data are conducted using the standard Pearson chi-squared test. In this study, we compared the performance of three test statistics for homogeneity between two populations using data from the 2009 customer satisfaction evaluation survey to the service from Gyeongsangnam-do regional offices of education: the standard Pearson test, the unbiasedWald test, and the Pearsontype test with survey-based point estimates. Through empirical analyses, we fist showed that the standard Pearson test inflates the values of test statistics very much and the results are not reliable. Second, in the comparison of Wald test and Pearson-type test, we find that the test results are affected by the number of categories, the mean and standard deviation of the eigenvalues of design matrix.

Tests for Equality of Two Distributions with Life-Table Model

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.2
    • /
    • pp.71-82
    • /
    • 2001
  • There are several ways to test the equality of two survival distributions under a variety of situations. Tests for equality of two distributions with life-table model for univariate independent response times are reviewed and introduced. It is developed that the methodology to test it for correlated response times where treatments are applied to different independent sets of cohorts. Data, which can be separated into two independent sets, from an angioplasty study where more than one procedure is performed on some patients are used to illustrate this methodology.

  • PDF

A Rao-Robson Chi-Square Test for Multivariate Normality Based on the Mahalanobis Distances

  • Park, Cheolyong
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.385-392
    • /
    • 2000
  • Many tests for multivariate normality are based on the spherical coordinates of the scaled residuals of multivariate observations. Moore and Stubblebine's (1981) Pearson chi-square test is based on the radii of the scaled residuals, or equivalently the sample Mahalanobis distances of the observations from the sample mean vector. The chi-square statistic does not have a limiting chi-square distribution since the unknown parameters are estimated from ungrouped data. We will derive a simple closed form of the Rao-Robson chi-square test statistic and provide a self-contained proof that it has a limiting chi-square distribution. We then provide an illustrative example of application to a real data with a simulation study to show the accuracy in finite sample of the limiting distribution.

  • PDF

Exact Tests for Variance Ratios in Unbalanced Random Effect Linear Models

  • Huh, Moon-Yul;Li, Seung-Chun
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.457-469
    • /
    • 1996
  • In this paper, we propose a method for an exact test of H : $p_i$ = $r_i$ for all i against K : $p_i$ $\neq$ $r_i$ for some i in an unbalanced random effect linear model, where $p_i$ denotes the ratio of the i-th variance component to the error variance. Then we present a method to test H : $p_i$ $\leq$ r against K : $p_i$> r for some specific i by applying orthogonal projection on the model. We also show that any test statistic that follows an F-distribution on the boundary of the hypotheses is equal to the one given here.

  • PDF

Dynamic analysis of financial market contagion (금융시장 전염 동적 검정)

  • Lee, Hee Soo;Kim, Tae Yoon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.75-83
    • /
    • 2016
  • We propose methodology to analyze the dynamic mechanisms of financial market contagion under market integration using a biological contagion analytical approach. We employ U-statistic to measure market integration, and a dynamic model based on an error correction mechanism (single equation error correction model) and latent factor model to examine market contagion. We also use quantile regression and Wald-Wolfowitz runs test to test market contagion. This methodology is designed to effectively handle heteroscedasticity and correlated errors. Our simulation results show that the single equation error correction model fits well with the linear regression model with a stationary predictor and correlated errors.

A Study on the Test of Homogeneity for Nonlinear Time Series Panel Data Using Bilinear Models (중선형 모형을 이용한 비선형 시계열 패널자료의 동질성검정에 대한 연구)

  • Kim, Inkyu
    • Journal of Digital Convergence
    • /
    • v.12 no.7
    • /
    • pp.261-266
    • /
    • 2014
  • When the number of parameters in the time series model are diverse, it is hard to forecast because of the increasing error by a parameter estimation. If the homogeneity hypothesis which was obtained from the same model about severeal data for the time series is selected, it is easy to get the predictive value better. Nonlinear time-series panel data for each parameter for each time series, since there are so many parameters that are present, and the large number of parameters according to the parameter estimation error increases the accuracy of the forecast deteriorated. Panel present in the time series of multiple independent homogeneity is satisfied by a comprehensive time series to estimate and to test of the parameters. For studying about the homogeneity test for the m independent non-linear of the time series panel data, it needs to set the model and to make the normal conditions for the model, and to derive the homogeneity test statistic. Finally, it shows to obtain the limit distribution according to ${\chi}^2$ distribution. In actual analysis,, we can examine the result for the homogeneity test about nonlinear time series panel data which are 2 groups of stock price data.