• Title/Summary/Keyword: Wake-Induced Transition

Search Result 13, Processing Time 0.01 seconds

Effects of Wake-Passing Orientation and Frequency on Unsteady Boundary Layer Transition on an Airfoil (주기적 통과 후류의 방향과 주파수가 익형 위 비정상 천이경계층에 미치는 영향)

  • Gang, Sin-Hyeong;Park, Tae-Chun;Jeon, U-Pyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.685-694
    • /
    • 2002
  • Effects of wake-passing orientation and frequency on the wake-induced boundary layer transition on a NACA0012 airfoil are investigated. The wakes are generated by rotating cylinders clockwise (CW) and counterclockwise (CCW) around the airfoil. Time- and phase-averaged streamwise mean velocities and turbulent fluctuations are measured with a single hot-wire probe. Wall skin frictions are estimated by the Computational Preston Tube Method (CPM). The pressure distribution on the airfoil is different according to the wake-passing orientation and frequency. Turbulent patches are generated in the laminar boundary layer due to the passing wake and the boundary layer becomes temporarily transitional. The transition process is significantly affected by the pressure gradient and the turbulent patches. For the receding wake, the turbulent patches propagate more rapidly than those for the approaching wake because adverse pressure gradient becomes larger. As the frequency increases, onset location of transition moles upstream and the boundary layer near the trailing edge becomes more transitional.

Experimental Study of Boundary Layer Transition on an Airfoil Induced by Periodically Passing Wake (I) -A Time-Averaged Characteristic- (주기적 후류 내의 익형 위 천이경계층에 관한 실험적 연구(I) -시간평균된 유동 특성-)

  • Park, Tae-Chun;Jeon, U-Pyeong;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.776-785
    • /
    • 2001
  • Hot-wire measurements are performed in boundary layers developing on a NACA0012 airfoil over which wakes pass periodically. The Reynolds number based on chord length of the airfoil is 2$\times$10(sup)5 and the wakes are generated by circular cylinders rotating clockwise and counterclockwise around the airfoil. This paper and its companion Part II describe the phenomena of wake-induced transition of the boundary layers on the airfoil using measured data; phase-and time-averaged streamwise mean velocities, turbulent fluctuations, integral parameters and wall skin frictions. This paper describes the background and facility together with results of time-averaged quantities. Due to the passing wake with mean velocity defects and high turbulence intensities, the laminar boundary layer is periodically disturbed at the upstream station and becomes steady-state transitional boundary layer at the downstream station. The velocity defect in the passing wake changes the local pressure at the leading of the airfoil, significantly affects the time-mean pressure distribution on the airfoil and eventually, has influence on the transition process of the boundary layer.

Unsteady Transitional Boundary Layer due to Rotor Stator Interaction at Design and Off Design Operations (설계점 및 탈설계점에서의 rotor-stator 상호작용에 의한 비정상 천이 경계층의 수치해석적 연구)

  • Kang Dong Jin;Jun Hyun Joo
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.17-30
    • /
    • 1999
  • The unsteady transitional boundary layer due to rotor-stator interaction was studied at two operation points, the design and one off design points. The off design point leads to lower blade loading and lower Reynolds number. A Navier-Stokes code developed in the previous study was parallelized to expedite computations. A low Reynolds number turbulence model was used to close the momentum equations. All computations show good agreement with experimental data. The wake induced transitional strip on the suction side of the stator is clearly captured at design point operation. There is no noticeable change in shape and phase angle of the wake induced strip even in the laminar sublayer. The wake induced transitional strip at off design point shows more complex structure. The wake induced transitional strip is observed only in the turbulent layer, and becomes obscure in the laminar sublayer and buffer layer. This behavior is probably consequent upon that the transition is governed by both wake induced strip and natural transition mechanism by Tollmien-Schlichting wave.

  • PDF

Numerical Prediction of Unsteady Transitional Boundary Layer Flows due to Rotor-Stator Interaction(II)-Characteristics of Unsteady Transitional Boundary Layer Flow- (정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 (II))

  • Kang, Dong-Jin;Lakshminarayana, Budugur
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.771-787
    • /
    • 1998
  • A Navier-Stokes code with a modified low Reynolds number k-.epsilon. turbulence model was used to study the unsteady transitional boundary layer flow due to rotor-stator interaction. The modification, proposed by Launder, to improve prediction of stagnation flows was incorporated to the low Reynolds number k-.epsilon. turbulence model by Fan-Lakshminarayana-Barnett. Numerical solution is shown to capture well the calmed laminar flow as well as the wake induced transitional strip due to rotor-stator interaction and shows improvement, in terms of onset of transition and its length, over previous Euler/boundary layer solution. The turbulent kinetic energy shows local maximum along the upstream rotor wake in the wake induced transitional strip and this characteristics is observed untill the end of transition. The wake induced strip also shown apparent even in the laminar sublayer as the upstream rotor wake penetrates inside the boundary layer.

Experimental Study of Boundary Layer Transition on an Airfoil Induced by Periodically Passing Wake (II) -A Phase-Averaged Characteristic- (주기적 후류 내의 익형 위 천이경계층에 관한 실험적 연구(II) -위상평균된 유동특성-)

  • Park, Tae-Chun;Jeon, U-Pyeong;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.786-798
    • /
    • 2001
  • This paper describes the phenomena of wake-induced transition of the boundary layers on a NACA0012 airfoil using measured phase-averaged data. Especially, the phase-averaged wall shear stresses are reasonably evaluated using the principle of Computational Preston Tube Method. Due to the passing wake, the turbulent patch is generated in the laminar boundary layer on the airfoil and the boundary layer becomes temporarily transitional. The patches propagate downstream with less speed than free-stream velocity and merge with each other at further down stream station, and the boundary layer becomes more transitional. The generation of turbulent patch at the leading edge of the airfoil mainly depends on velocity defects and turbulent intensity profiles of passing wakes. However, the growth and merging of turbulent patches depend on local streamwise pressure gradients as well as characteristics of turbulent patches. In this transition process, the present experimental data show very similar features to the previous numerical and experimental studies. It is confirmed that the two phase-averaged mean velocity dips appear in the outer region of transitional boundary layer for each passing cycle. Relatively high values of the phase-averaged turbulent fluctuations in the outer region indicate the possibility that breakdown occurs in the outer layer not near the wall.

Wake-Induced Boundary Layer Transition on an Airfoil at Moderate Free-Stream Turbulence (자유유동 난류강도에 따른 익형 위 후류유도 경계층 천이의 거동)

  • Park, Tae-Choon;Kang, Shin-Hyoung;Jeon, Woo-Pyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.921-928
    • /
    • 2006
  • Wake-induced boundary-layer transition on a NACA0012 airfoil with zero angle of attack is experimentally investigated in periodically passing wakes under the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensities $(Tu_{\infty})$ at the leading edge of the airfoil are 0.5 and 3.5%, respectively. The Reynolds number (Rec) based on chord length (C) of the airfoil is $2.0{\times}10^5$, and Strouhal number (Stc) of the passing wake is about 1.4. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The patch under the high free-stream turbulence $(Tu_{\infty}=3.5%)$ grows more greatly in laminar-like regions compared with that under the low turbulence $(Tu_{\infty}=0.5%)$ in laminar regions. The former, however, does not greatly change the turbulence level in very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually loses its identification, whereas the latter keeps growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and with the receding wakes.

Experimental Study on the Effects of Upstream Wakes on Cascade Flow (상류 후류의 익렬 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyeong-Ju;Jo, Gang-Rae;Ju, Won-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.330-338
    • /
    • 2001
  • This paper is concerned with the effect of cylinder wakes upstream on blade characteristics of compressor cascade(NCA 65 series). At first, it is found that the velocity defect ratio of cylinder wake varies according to the acceleration and deceleration in a flow field but, is conserved nearly constant at flow downstream the cascade, irrespective of the flow path in the cascade. When a cylinder wake flows along near the suction surface of the blade, or impinges on the leading edge, the turbulent velocities are supplied on or inside the outer edge of boundary layer near the leading edge of suction surface, and the transition to a transitional or turbulent boundary layers is induced, so that the laminar separation is prevented, but the profile loss increases. The transition of boundary layer to a transitional or turbulent one is strongly related with the strength of added turbulent velocities near the leading edge on the suction surface, which is influenced by the flow path of a cylinder wake.

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 1

  • Kang, Dong-Jin;Lakshminarayana, Budugur
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.757-770
    • /
    • 1998
  • A Navier-Stokes code with a low Reynolds number k-.epsilon. turbulence model was tested to investigate its predictability for the unsteady transitional boundary layer flow due to rotor-stator interaction. A preliminary calculation with three different numbers of time steps 300, 600, and 1000 for a rotor wake passing period was carried out to see the effects of time steps on the unsteady flow and pressure fields due to rotor-stator interaction. Numerical solutions showed that unsteady pressure was much more sensitive to the number of time steps and over 600 time steps should be used to get a numerical solution independent of the number of time steps for a rotor wake passing period. The original low Reynolds number k-.epsilon. turbulence model showed very poor prediction of the unsteady transitional boundary layer flow due to rotor-stator interaction. This was due to the excessive production of turbulent kinetic energy near the leading edge. A modification suggested by Launder was incorporated and the modified model captured well the wake induced transitional strip. Present solutions also showed improved prediction over previous Euler/boundary layer solution in terms of the onset of unsteady transition and its extent.

Effects of Uniform and Turbulent Inflow Conditions on Wake Topology and Vortex Growth Behind a Ramp (균일 및 난류 입구조건이 램프 후류 형상 및 성장에 미치는 영향)

  • Lokesh Kalyan Gutti;Mustafa Z. Yousif;Hee-Chang Lim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.24-33
    • /
    • 2023
  • This work is to observe the wake flow generated behind a ramp. We have conducted a large eddy simulation with two ramp models having different heights with two different inflow conditions. Reynolds number based on the height of the large ramp (LR) and small ramp (SR) are Reh = 2.8×104 and 1.4×104 respectively. The wake flow visualization shows the formation of streamwise counter-rotating vortices pairs at the downstream of the obstacle. These primary vortices are stretched and lifted up when moving downstream. In order to observe the effect of the inflow condition on the wake transition, two different inlet flow conditions are given on the inlet section as an inlet boundary condition. Induced counter-rotating vortices pairs due to sharp-edged triangular ramp obstacles are developed and propagated downstream. In the result, the large ramp shows a more complicated wake structure of the boundary layer than the small ramp.

The Effect of Wake-Induced Periodic Unsteadiness on Heat Transfer in the Transitional Boundary Layer Around NACA0012 Airfoil (주기적인 통과후류가 NACA0012 익형 표면에서의 천이 경계층 열전달에 미치는 영향)

  • Jeong, Ha-Seung;Lee, Jun-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.645-652
    • /
    • 2001
  • Heat transfer data are presented which describe characteristics of the transitional thermal boundary layers on the NACA0012 airfoil with upstream wakes. The wakes are generated periodically by circular cylindrical rods which rotate around the airfoil like a squirrel cage. The unsteady wakes simulate those produced by the upstream rotating blade rows in axial turbomachines. The pressure or suction side of the airfoil is also simulated according to the rotating direction of circular rods. As the Reynolds number and the number of rotating rods increase, the boundary layer transition occurs earlier and the Nusselt number increases. The difference of heat transfer coefficient is less on the pressure side than on the suction side. At a constant Reynolds number, the Nusselt number is larger and smaller, respectively, before and after transition as the Strouhal number increases.