• Title/Summary/Keyword: Wake effect

Search Result 418, Processing Time 0.029 seconds

Wake Shapes Behind Wings in Close Formation Flight Near the Ground

  • Han Cheolheui;Cho Leesang;Cho Jinsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.674-681
    • /
    • 2005
  • The unsteady evolution of trailing vortex sheets behind wings in close formation flight near the ground is simulated using a discrete vortex method. The ground effect is included by an image method. The method is validated by comparing computed results with other numerical results. For a lifting line with an elliptic loading, the ground has an effect of moving wingtip vortices laterally outward and suppressing the development of vortex evolution. The gap between wings in close formation flight has an effect of moving up wingtip vortices facing each other. For wings flying in parallel, the ground effect causes the wingtip vortices facing each other to move up, and it makes the opposite wing tip vortices to move laterally outward. When there is a relative height between the wings in ground effect, right-hand side wingtip vortices from a mothership move laterally inward.

Effect of the Advance Ratio on the Evolution of Propeller Wake (전진비가 추진기 후류에 미치는 영향)

  • Baek, Dong Geun;Yoon, Hyun Sik;Jung, Jae Hwan;Kim, Ki-Sup;Paik, Bu-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The present study numerically investigated the effect of the advance ratio on the wake characteristics of the marine propeller in the propeller open water test. Therefore, a wide range of the advance ratio(0.2${\kappa}-{\omega}$SST Model are considered. The three-dimensional vortical structures of tip vortices are visualized by the swirl strength, resulting in fast decay of the tip vortices with increasing the advance ratio. Furthermore, to better understanding of the wake evolution, the contraction ratio of the slip stream for different advance ratios is extracted from the velocity fields. Consequently, the slip stream contraction ratio decreases with increasing the advance ratio and successively the difference of the slip stream contraction ratio between J=0.2 and J=0.8 is about 0.1R.

A Study on the Performance of the Wing In Ground Effect by a Vortex Lattice Method (와류 격자법에 의한 지면효과익의 성능 연구)

  • Jeong, Gwang-Hyo;Jang, Jong-Hui;Jeon, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.87-96
    • /
    • 1998
  • A numerical simulation was done to investigate the performance of thin wings in close vicinity to ground. The simulation is based on Vortex Lattice Method(VLM) and freely deforming wake elements are taken into account for a sudden acceleration case. The parameters covered in the simulation are angle of attack, aspect ratio, ground clearance, sweep angle and taper ratio. In addition, the effect of the wing endplate on the ground effect is included. The wing sections used for present computations are uncambered, cambered and S-types. The present computational results are compared with other published computational results and experimental data.

  • PDF

Experimental study on wake-induced vibrations of two circular cylinders with two degrees of freedom

  • Du, Xiaoqing;Jiang, Benjian;Dai, Chin;Wang, Guoyan;Chen, Suren
    • Wind and Structures
    • /
    • v.26 no.2
    • /
    • pp.57-68
    • /
    • 2018
  • Wind tunnel tests are conducted to investigate wake-induced vibrations of two circular cylinders with a center-to-center spacing of 4 diameters and attack angle varying from $0^{\circ}$ to $20^{\circ}$ for Reynolds numbers between 18,000 and 168,800. Effects of structural damping, Reynolds number, attack angle and reduced velocity on dynamic responses are examined. Results show that wake-induced vortex vibrations of the downstream cylinder occur in a wider range of the reduced velocity and have higher amplitudes in comparison to the vortex-induced vibration of a single circular cylinder. Two types of wake-induced instability phenomena with distinct dynamic characteristics are observed, which may be due to different generation mechanisms. For small attack angles like $5^{\circ}$ and $10^{\circ}$, the instability of the downstream cylinder characterizes a one-degree-of-freedom (1-DOF) oscillation moving in the across-wind direction. For a large attack angle like $20^{\circ}$, the instability characterizes a two-degree-of-freedom (2-DOF) oscillation with elliptical trajectories. For an attack angle of $15^{\circ}$, the instability can transform from the 1-DOF pattern to the 2-DOF one with the increase of the Reynolds number. Furthermore, the two instabilities show different sensitivity to the structural damping. The 1-DOF instability can be either completely suppressed or reduced to an unsteady oscillation, while the 2-DOF one is relatively less sensitive to the damping level. Reynolds number has important effects on the wake-induced instabilities.

Evaluation of Wake Galloping for Inclined Parallel Cables by Two-Dimensional Wind Testes Tests (2차원 풍동실험을 통한 평행 경사 실린더의 웨이크 갤로핑 평가)

  • Kim, Sun-Joong;Kim, Ho-Kyung;Lee, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.763-775
    • /
    • 2011
  • The wake galloping phenomenon is evaluated for two cylinders via two-dimensional wind tunnel tests. The two cylinders are deployed parallel to the inclination of the vertical plane, which simulates the inclined stay cables of a cable-stayed bridge. The upstream and downstream displacements of the cylinder are observed with varying center distances between the two cylinders. The effect of structural damping on the mitigation of wake galloping is also investigated. The amplitude of the vibration is very sensitive to center distance between the two cylinders. The maximum amplitudes exceededthe allowable limit of the design guidelines for small center distances of less than or equal to six times the diameter of the cylinder. The overall results conformedto the conventional design practice for the wake galloping of parallel cables. It was found, however, that the increase in the damping was not effective in reducing the amplitude of the vibration in the wake galloping phenomenon.

Comparative Analysis of Runway Ultimate Capacity using Wake Turbulence Re-Categorization (Wake Turbulence RECAT을 적용한 활주로 절대 수용량 비교 분석)

  • Jeongwoo Park;Huiyang Kim;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.498-509
    • /
    • 2021
  • The wake turbulence at the wingtip of preceding aircraft may affect the normal operation of following aircraft. Aircraft are classified into four categories according to their maximum take-off weight, and horizontal separation is applied with this category matrix. The FAA and EUROCONTROL revealed that the magnitude and effect of preceding aircraft wake turbulence were smaller than the current distance separation minima suggest. This new information presents the opportunity for revising wake turbulence minima into seven categories (RECAT). This paper confirms the feasibility of implementing RECAT at major airports in South Korea using the draft of ICAO Doc. 10122. The paper also calculates the ultimate runway capacity of Incheon International Airport in South Korea using the Harris Model and comparatively analyzes the amount of runway capacity. As a result of the analysis, it was confirmed that the implementation of RECAT could increase the ultimate runway capacity of Incheon International Airport. This paper's calculation methods and results can be used as primary data for implementing RECAT in other airports.

Aerodynamic Analysis of a Hovering Rotor by the Doublet Panel Method (Doublet Panel Method를 이용한 Hovering Rotor의 공기역학적 해석)

  • Yoo, Neung-Soo;Park, Hong-Nam
    • Journal of Industrial Technology
    • /
    • v.8
    • /
    • pp.31-35
    • /
    • 1988
  • To predict the airloads on helicopter rotors in hover, the doublet panel method of the first order is applied. For this simulation, the rotor blade is divided into many panels both in spanwise and in chordwise direction, and Kocurek-Tangler's prescribed wake with roll-up process is taken for determing wake geometry and then represented by vortex lattice. To abtain more physically realistic calculation of induced velocity, the vortex core model is adopted and the compressibility effect is considered by Karman-Tsien rule.

  • PDF

Flow Visualization for a Dragonfly Type Wing (잠자리 유형 날개에 대한 흐름 가시화)

  • Kim, Song-Hwak;Kim, Hyun-Seok;Chang, Jo-Won;Boo, Joon-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1586-1591
    • /
    • 2004
  • Flow visualization experiments have been performed to investigate the effects of phase lag, reduced frequency qualitatively by examining wake pattern on a dragonfly type wing. The model was built with a scaled-up, flapping wings, composed of paired wings with fore- and hindwing in tandem, that mimicked the wing form of a dragonfly. The present study was conducted by using the smoke-wire technique, and an electronic device was mounted to find the exact positional angle of wing below the tandem wings, which amplitude is ranged from $-16.5^{\circ}$ to $+22.8^{\circ}$. Phase lag applied on the wings is $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The reduced frequency is 0.15, 0.3 and 0.45 to investigate the effect of reduced frequency. It is inferred through observed wake pattern that the phase lag clearly plays an important role in the wake structures and in the flight efficiency as changing the interaction of wings. The reduced frequency also is closely related to wake pattern and determines flight efficiency.

  • PDF

NUMERICAL STUDY ON THE CLOCKING EFFECT IN A 1.5 STAGE AXIAL TURBINE (1.5단 축류터빈에서의 Clocking 효과에 관한 수치적 연구)

  • Park, Jong-Il;Choi, Min-Suk;Baek, Je-Hyun
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.1-8
    • /
    • 2006
  • Clocking effects of a stator on the performance and internal flow in an UTRC 1.5 stage axial turbine are investigated using a three-dimensional unsteady flow simulation. Six relative positions of two rows of stator are investigated by positioning the second stator being clocked in a step of 1/6 pitch. The relative efficiency benefit of about 1% is obtained depending on the clocking positions. However, internal flows have some different characteristics from that in the previous study at the best and worst efficiency positions, since the first stator wake is mixed out with the rotor wake before arriving at the leading edge of the second stator. Instead of the first stator wake, it is found that the wake interaction of the first stator and rotor has a important role on a relative efficiency variation at each clocking position. The time-averaged local efficiency along the span at the maximum efficiency is more uniform than that at the minimum efficiency. That is, the spanwise efficiency distribution at the minimum efficiency has larger values in mid-span but smaller values near the hub and casing in comparison to those at the maximum efficiency. Moreover, the difference between maximum and minimum instantaneous efficiencies during one period is found to be smaller at the maximum efficiency than at the minimum efficiency.

NUMERICAL ANALYSIS FOR SUPPRESSING UNSTEADY WAKE FLOW ON WIND TURBINE TOWER USING EDISON_CFD (EDISON_전산열유체를 활용한 풍력발전기 타워의 후류 불안정성 억제에 관한 수치연구)

  • Kim, S.Y.;Jin, D.H.;Lee, K.B.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • The performance of the wind turbine is determined by wind speed and unsteady flow characteristics. Unsteady wake flow causes not only the decline in performance but also structural problems of the wind turbine. In this paper, conceptual designs for the wind turbine tower are conducted to minimize unsteady wake flow. Numerical simulations are performed to inspect the shape effect of the tower. Through the installation of additional structures at the rear of the tower, the creation of Karman vortex is delayed properly and vortex interactions are reduced extremely, which enhance the stability of the wind turbine. From the comparative analysis of lift and drag coefficients for each structure, it is concluded that two streamwise tips with a splitter plate have the most improved aerodynamic characteristics in stabilizing wake flow.