• 제목/요약/키워드: Wake characteristics

검색결과 523건 처리시간 0.031초

운전자 졸음 및 각성 상태 시 ECG신호 처리를 통한 심장박동 신호 특성 (Characteristics of Heart Rate Variability Derived from ECG during the Driver's Wake and Sleep States)

  • 김민수;김윤년;허윤석
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.136-142
    • /
    • 2014
  • Distinct features in heart rate signals during the driver's wake and sleep states could provide an initiative for the development of a safe driving systems such as drowsiness detecting sensor in a smart wheel. We measured ECG from health subjects ($23.5{\pm}2.5$ in age) during the wake and drowsiness states. The proposed method is able to detect R waves and R-R interval calculation in the ECG even when the signal includes in abnormal signals. Heart rate variability(HRV) was investigated for the time domain and frequency domains. The STD HR(0.029), NN50(0.044) and VLF power(0.0018) of the RR interval series of the subjects were significantly different from those of the control group (p < 0.05). In conclusion, there are changes in heart rate from wake to drowsiness that are potentially to be detected. The results in our study could be useful for the development of drowsiness detection sensors for effective real-time monitoring.

사각주 후류가 선형터빈익렬의 유동 및 열전달에 미치는 영향에 관한 연구 (Influence of the Wake Behind Rectangular Bars on the Flow and Heat Transfer in the Linear Turbine Cascade)

  • 윤순현;심재경;우창수;이대희
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.864-870
    • /
    • 1999
  • An experimental study Is conducted in a four-vane linear cascade in order to examine the influence of the wake behind rectangular bars on the flow and heat transfer characteristics. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress are measured using a hot-wire anemometer, and to measure the convective heat transfer coefficients on the blade surface liquid crystal/gold film Intrex technique is used. Each of experimental cases is characterized by the unsteadiness measured at the entrance of the cascade. The wake behind the rectangular bars enhances the turbulent motion of the flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the blade surface increase with increasing unsteadiness.

회전익기 통합해석프로그램을 위한 공력해석코드 개발 (Development of an Aerodynamic Performance Analysis Module for Rotorcraft Comprehensive Analysis Code)

  • 이준배;이재원;이관중;오세종;김덕관
    • 한국항공우주학회지
    • /
    • 제37권3호
    • /
    • pp.224-231
    • /
    • 2009
  • 본 논문에서는 회전익기 통합해석프로그램개발의 일환으로 공력해석코드를 개발 및 검증하였다. 기본적인 공력하중은 익형 공력테이블을 이용한 깃요소이론을 기반으로 계산하였고, 로터의 유도 유입류를 계산하기 위해 선형유입류 모델, 동적유입류 모델, 지정후류모델, 자유후류 모델 등 여러 유입류 예측기법을 사용하였다. 각 모델의 특성을 파악하기 위해 Elliott 등의 유도 유입류 실험결과와 AH-1G 실험결과의 국소 수직력계수를 비교 및 검증하였다.

상류 후류의 익렬 유동에 미치는 영향에 대한 실험적 연구 (Experimental Study on the Effects of Upstream Wakes on Cascade Flow)

  • 김형주;조강래;주원구
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.330-338
    • /
    • 2001
  • This paper is concerned with the effect of cylinder wakes upstream on blade characteristics of compressor cascade(NCA 65 series). At first, it is found that the velocity defect ratio of cylinder wake varies according to the acceleration and deceleration in a flow field but, is conserved nearly constant at flow downstream the cascade, irrespective of the flow path in the cascade. When a cylinder wake flows along near the suction surface of the blade, or impinges on the leading edge, the turbulent velocities are supplied on or inside the outer edge of boundary layer near the leading edge of suction surface, and the transition to a transitional or turbulent boundary layers is induced, so that the laminar separation is prevented, but the profile loss increases. The transition of boundary layer to a transitional or turbulent one is strongly related with the strength of added turbulent velocities near the leading edge on the suction surface, which is influenced by the flow path of a cylinder wake.

고체입자가 부상된 이상유동에서 운반유체의 난류강도에 대한 해석적 접근 (A Theoretical Approach on the Turbulence Intensity of the Carrier Fluid in Two-phase Particle-laden Flows)

  • 김세윤;이충구;이계복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2037-2042
    • /
    • 2003
  • The purpose of this research is to develop the model of turbulence modulation due to the presence of particles in various types of particle-laden flows. Available experimental data were surveyed and the dependence of turbulence modulation of carrier-phase on particle size, concentration and particle Reynolds number were examined. This study takes into account the effect of wake produced by particle, the drag between phases and the velocity gradient in the wake to estimate the production of turbulence. The model of turbulence modulation using the mixing length theory under the assumption of equilibrium flow is proposed. Numerical results show that the model is successful in predicting the characteristics of the particle-laden flow in various conditions both qualitatively and quantitatively.

  • PDF

고체입자가 부상된 이상유동에서 운반유체의 난류강도에 대한 해석적 접근 (A Theoretical Approach on the Turbulence Intensity of the Carrier Fluid in Two-phase Particle-laden Flows)

  • 김세윤;이충구;이계복
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.813-820
    • /
    • 2003
  • The purpose of this research is to develop the model of turbulence modulation due to the presence of particles in various types of particle-laden flows Available experimental data are surveyed and the dependence of turbulence modulation of carrier-phase on particle size, concentration and. particle Reynolds number are examined. This study takes into account the effect of wake produced by particle, the drag between phases and the velocity gradient in the wake to estimate the production of turbulence. The model of turbulence modulation using the mixing length theory under the assumption of equilibrium flow is proposed. Numerical results show that the model is successful in predicting the characteristics of the particle-laden in various flow conditions both qualitatively and quantitatively.

층상류 속에 있는 구 후류의 비정상 와류 형성에 관한 수치 해석 (A Numerical Study of Formation of Unsteady Vortex behind a Sphere in Stratified Flow)

  • 이승수;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.715-720
    • /
    • 2000
  • Stratified flow past a three-dimensional obstacle such as a sphere has been a long-lasting subject of geophysical, environmental and engineering fluid dynamics. In order to investigate the effect of the stratification on the near wake, in particular, the unsteady vortex formation behind a sphere, numerical simulations of stratified flows past a sphere are conducted. The time-dependent Navier-Stokes equations are solved using a three-dimensional finite element method and a modified explicit time integration scheme. Laminar flow regime is considered and linear stratification of density is assumed under Boussinesq approximation. The computed results include the characteristics of the near wake and the unsteady vortex shedding. With a strong stratification, the separation on the sphere is suppressed and the wake structure behind the sphere becomes planar, resembling that behind a vertical cylinder.

  • PDF

Vehicle-induced aerodynamic loads on highway sound barriers part1: field experiment

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • 제17권4호
    • /
    • pp.435-449
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. A field experiment is carried out with respect to three important factors: vehicle type, vehicle speed and the vehicle-barrier separation distance. Based on the results, the time-history of pressures is given, showing identical characteristics in all cases. Therefore, the vehicle-induced aerodynamic loads acting on the highway sound barrier are summarized as the combination of "head impact" and "wake impact". The head impact appears to have potential features, while the wake impact is influenced by the rotational flow. Then parameters in the experiment are analyzed, showing that the head impact varies with vehicle speed, vehicle-barrier separation distance, vehicle shape and cross-sectional area, while the wake impact is mainly about vehicle-barrier separation distance and vehicle length.

입자영상유속계를 이용한 가두리 망지의 난류강도 계측 (Measurement of turbulence intensity of cage net using the particle imaging velocimetry)

  • 배재현;안희춘
    • 수산해양기술연구
    • /
    • 제50권4호
    • /
    • pp.595-603
    • /
    • 2014
  • This study is aimed to analyze the hydrodynamic characteristics of the cage net in the circulating water channel. It visualized wake flows using a PIV (paricle imaging velocimetry) and analyzed the flow velocity distribution. In addition, the vorticity and turbulence intensity were analyzed from the wake flow distribution and compared changes by flow velocity. Results showed that the average turbulence intensity in the circulating water channel was very stable showing less than 1% in the range between 0.2 and 0.8 m/s. The drag coefficient affecting to the netting was estimated to be 1.35. The flow decreasing rate of the wake in the middle of the netting was 2.1% at the range of 0.2 m/s and it was constant at 6.6-6.9% over the range of 0.4 m/s irrespective of velocity increases. Finally, the change of turbulence intensity by netting and knot mesh could be confirmed. These results can be utilized as a basic information for the future research of flow characteristics by fishing nets and meshes.

톱니형 휜이 부착된 원주의 근접후류특성 연구 (IV) - 와형성영역의 유동비교 - (Characteristics of Near Wake Behind a Circular Cylinder with Serrated fins (IV) - Comparison of Vortex Formation Regions -)

  • 류병남;김경천;부정숙
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.357-366
    • /
    • 2003
  • An experimental study is performed to investigate characteristics of near of wakes of circular cylinders with serrated fins using a hot-wire anemometer for various freestream velocities. The main focus of this paper is to investigate a reason why a vortex formation length is increased suddenly. Velocity of the fluid which flow through fins decreases as fin's height and freestream velocity increases and fin pitch decreases, and a thickness of boundary layer increases. The finned tube has a lower velocity gradient when the higher boundary layer grows. This velocity gradient on finned tube makes a weak shear force in the wake and moves to downstream in a state of lower momentum transfer between the freestream and the wake. The phenomenon makes a vortex formation length increased suddenly. The fluctuations of the velocity distributions on the finned tube and (equation omitted) = 1.0 contour line in the vortex formation region decreases when the fin height increases and the pitch decreases.