• 제목/요약/키워드: Wafer cleaning

검색결과 172건 처리시간 0.043초

65nm급 300mm Wafer 세정조 개발을 위한 유동 특성연구

  • 김진태;김광선;이승희;정은미
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2007년도 춘계학술대회
    • /
    • pp.174-178
    • /
    • 2007
  • The cleaning process to remove small particles, ions, and other polluted sources is one of the major parts in the recent semiconductor industry because it can cause fatal errors on the quality of the final products. According to the other reports, the major factors of bath's fluid motion are the cleaning method, nozzle, the geometry (of bath, guide and wafer), and the position (of guide and wafer). So to enhance cleaning efficiency in the bath, these factors must be controlled. The purpose of this study is to analyze and visualize fluid motion in the cleaning bath as basic data for designing the nozzle system and finding the process control parameters. For that, we used the general CFD code FLUENT.

  • PDF

세정액에 따른 실리콘 웨이퍼의 Cu 및 Fe 불순물 제거 (Removal of Cu and Fe Impurities on Silicon Wafers from Cleaning Solutions)

  • 김인정;배소익
    • 한국재료학회지
    • /
    • 제16권2호
    • /
    • pp.80-84
    • /
    • 2006
  • The removal efficiency of Cu and Fe contaminants on the silicon wafer surface was examined to investigate the effect of cleaning solutions on the behavior of metallic impurities. Silicon wafers were intentionally contaminated with Cu and Fe solutions by spin coating and cleaned in different types of cleaning solutions based on $NH_4OH/H_2O_2/H_2O\;(SC1),\;H_2O_2/HCl/H_2O$ (SC2), and/or HCl/$H_2O$ (m-SC2) mixtures. The concentration of metallic contaminants on the silicon wafer surface before and after cleaning was analyzed by vapor phase decomposition/inductively coupled plasma-mass spectrometry (VPD/ICP-MS). Cu ions were effectively removed both in alkali (SC1) and in acid (SC2) based solutions. When $H_2O_2$ was not added to SC2 solution like m-SC2, the removal efficiency of Cu impurities was decreased drastically. The efficiency of Cu ions in SC1 was not changed by increasing cleaning temperature. Fe ions were soluble only in acid solution like SC2 or m-SC2 solution. The removal efficiencies of Fe ions in acid solutions were enhanced by increasing cleaning temperature. It is found that the behavior of metallic contaminants as Cu and Fe from silicon surfaces in cleaning solutions could be explained in terms of Pourbaix diagram.

Si 웨이퍼/솔더/유리기판의 무플럭스 접합에 관한 연구 (A Study on the Fluxless Bonding of Si-wafer/Solder/Glass Substrate)

  • 박창배;홍순민;정재필;;강춘식;윤승욱
    • Journal of Welding and Joining
    • /
    • 제19권3호
    • /
    • pp.305-310
    • /
    • 2001
  • UBM-coated Si-wafer was fluxlessly soldered with glass substrate in $N_2$ atmosphere using plasma cleaning method. The bulk Sn-37wt.%Pb solder was rolled to the sheet of $100\mu\textrm{m}$ thickness in order to bond a solder disk by fluxless 1st reflow process. The oxide layer on the solder surface was analysed by AES(Auger Electron Spectroscopy). Through rolling, the oxide layer on the solder surface became thin, and it was possible to bond a solder disk on the Si-wafer with fluxless process in $N_2$ gas. The Si-wafer with a solder disk was plasma-cleaned in order to remove oxide layer formed during 1st reflow and soldered to glass by 2nd reflow process without flux in $N_2$ atmosphere. The thickness of oxide layer decreased with increasing plasma power and cleaning time. The optimum plasma cleaning condition for soldering was 500W 12min. The joint was sound and the thicknesses of intermetallic compounds were less than $1\mu\textrm{m}$.

  • PDF

웨이퍼 클리닝 장비의 웨이퍼 장착 위치 인식 시스템 (Wafer Position Recognition System of Cleaning Equipment)

  • 이정우;이병국;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.400-409
    • /
    • 2010
  • 본 논문에서는 반도체 생산 공정 중 클리닝 공정 설비에서, 웨이퍼의 장착 위치를 인식하는 영상 인식 시스템을 제안한다. 제안한 시스템은 웨이퍼의 위치 이탈에 따른 위치오차 발생 시 이를 클리닝 설비에 전달하여, 웨이퍼 클리닝 장비의 파손을 방지하여 시스템의 신뢰성과 경제성을 높이기 위한 것이다. 시스템의 주요 알고리즘은 카메라에 획득된 영상과 실제 웨이퍼간의 캘리브레이션 방법, 적외선 조명 및 필터 설계, 최소자승법 기반의 원 생성알고리즘에 의한 중심위치 판별법이다. 제안한 시스템은 고 신뢰성과 고 정밀의 위치인식 알고리즘을 사용하여, 효율적으로 웨이퍼 인라인 공정에 설치함을 목표로 하며 실험결과 충분한 허용 기준 내에서 오차를 검출해내는 좋은 성능을 보여준다.

구리 CMP 후 연마입자 제거에 버프 세정의 효과 (Effect of buffing on particle removal in post-Cu CMP cleaning)

  • 김영민;조한철;정해도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1880-1884
    • /
    • 2008
  • Cleaning is required following CMP (chemical mechanical planarization) to remove particles. The minimization of particle residue is required with each successive technology generation, and the cleaning of wafers becomes more complicated. In copper damascene process for interconnection structure, it utilizes 2-steop CMP consists of Cu CMP and barrier CMP. Such a 2-steps CMP process leaves a lot of abrasive particles on the wafer surface, cleaning is required to remove abrasive particles. In this study, the buffing is performed various conditions as a cleaning process. The buffing process combined mechanical cleaning by friction between a wafer and a buffing pad and chemical cleaning by buffing solution consists of tetramethyl ammonium hydroxide (TMAH)/benzotriazole(BTA).

  • PDF

T형의 waveguide를 이용한 Post CMP용 메가소닉 세정장치에 대한 연구 (Study of T Type Waveguide in Single Wafer Megasonic Cleaning for Post CMP)

  • 김태곤;이양래;임의수;강국진;김현세;박진구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.364-365
    • /
    • 2006
  • Transverse some wave was generated by T type waveguide for single wafer cleaning application T type megasonic waveguide was analyzed by acoustic pressure measurements and particle removal efficiency. Compared to conventional longitudinal waves, not like longitudinal waves, transverse waves showed changes of direction and phase which increased the cleaning efficiency.

  • PDF

레이저 유기 충격파를 이용한 웨이퍼 표면 미소입자 제거 (Removal of small particles from silicon wafers using laser-induced shock waves)

  • 이종명;조성호
    • 한국레이저가공학회지
    • /
    • 제5권2호
    • /
    • pp.9-15
    • /
    • 2002
  • Basic principles and unique characteristics of laser-induced shock cleaning have been described compared to a conventional laser cleaning method and the removal of small tungsten particles from silicon wafer surfaces was attempted using both methods. It was found that the conventional laser cleaning was not feasible to remove the tungsten particles whereas a successful removal of the particles was carried out by the laser-induced shock waves. From the quantitative analysis using a surface scanner, the average removal efficiency of the particles was more than 98% where smaller particles were slightly more difficult to remove probably due to the increased adhesion force with a decrease of the particle size. It was also seen that the gap distance between the laser focus and the wafer surface is an important processing parameter since the removal efficiency is strongly dependent on the gap distance.

  • PDF