• 제목/요약/키워드: Wafer Grinding

검색결과 58건 처리시간 0.029초

실리콘 웨이퍼의 고정밀 단면 연삭에 관한 연구 (A Study on Precision Infeed Grinding for the Silicon Wafer)

  • 안대균;황징연;최성주;곽창용;하상백
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1-5
    • /
    • 2005
  • The grinding process is replacing lapping and etching process because significant cost savings and performance improvemnets is possible. This paper presents the experimental results of wafer grinding. A three-variable two-level full factorial design was employed to reveal the main effects as well as the interaction effects of three process parameters such as wheel rotational speed, chuck table rotational speed and feed rate on TTV and STIR of wafers. The chuck table rotaional speed was a significant factor and the interaction effects was significant. The ground wafer shape was affected by surface shape of chuck table.

  • PDF

실리콘 웨이퍼 단면 연삭기 구조물 특성평가 (Review for Features of Wafer In-feed Grinder Structure)

  • 하상백;최성주;안대균;김인수;최영휴
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.555-556
    • /
    • 2006
  • In recent years, the higher flatness level in wafer shape has been strictly demanded with a high integration of the semiconductor devices. It has become difficult for a conventional wafer preparing process to satisfy those demands. In order to meet those demands, surface grinding with in-feed grinder is adopted. In an in-feed grinding method, a chuck table fur fixing a semiconductor wafrr rotates on its rotation axis with a slight tilt angle to the rotation axis of a cup shaped grinding wheel and the grinding wheel in rotation moves down to grind the wafer. So, stability of the grinder structure is very important to aquire a wafer of good quality. This paper describes the features of the in-feed grinder and some FEM analysis results of the grinder structure.

  • PDF

사파이어 절삭용 다층 전착 다이아몬드 공구에 대한 연구 (A Study on Electro-deposited Multi-layered Diamond Tool for Grinding Sapphire Wafers)

  • 임고운;송길용;홍주화
    • 열처리공학회지
    • /
    • 제30권5호
    • /
    • pp.222-226
    • /
    • 2017
  • Recently sapphire wafer has expected as smart phone cover material, however, brittle nature of sapphire needed edge grinding processes to prevent early initiation of cracks. Electro-deposited multi-layered groove tools with $35{\mu}m$ diamond particles were studied for sapphire wafer grinding. Solid particle flow behaviors in agitated electrolyte was studied using PIV(Particle Image Velocimetry), and uniform particle distribution in Ni bond were obtained when agitating impeller was located lower part of electrolyte. Hardness values of $400{\pm}50Hv$ were maintained for retention of diamond particles in electro-deposited bond layer. Sapphire wafer edge grinding test was carried out and multi-layered $160{\mu}m$ thick diamond tool showed much greater grinding capabilities up to 2000 sapphire wafers than single-layered $50{\mu}m$ thick diamond electro-deposited tools of 420 wafers. The reason why 3 times thicker multi-layered tools than single-layered tools showed 5 times longer tool lives in grinding processes was attributed to self-dressed new diamond particles in multi-layered tools, and multi-layered diamond tools could be promising for sapphire grinding.

모터 전류 변화를 이용한 실리콘 웨이퍼 연삭 공정 모니터링 시스템 (Monitering System of Silicon Wafer Grinding Process Using for the Change of Motor Current)

  • 박선준;김성렬;이상직;박범영;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.104-107
    • /
    • 2005
  • Recently, according to the development of semiconductor industry, needed to high-integration and high-functionality. These changes are required for silicon wafer of large scale diameter and precision of TTV (Total Thickness variation). So, in this research, suggest that the method of monitoring system is using motor current. This method is needed for observation of silicon wafer grinding process. Motor current sensor is consisted of hall sensor. Hall sensor is known to catching of change of current. Received original signal is converted to the diginal, then, it is calculated RMS values, and then, it is analysed in computer. Generally, the change of force is relative to the change of current, So this reason, in this research tried to monitoring of motor current change, and then, it will be applied to analysis for silicon wafer grinding process. using motor current sensor.

  • PDF

실리콘 웨이퍼 연삭 가공의 기구학적 모델링과 해석 (Kinematic Modeling and Analysis of Silicon Wafer Grinding Process)

  • 김상철;이상직;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.42-45
    • /
    • 2002
  • General wheel mark in mono-crystalline silicon wafer finding is able to be expected because it depends on radius ratio and angular velocity ratio of wafer and wheel. The pattern is predominantly determined by the contour of abrasive grits resulting from a relative motion. Although such a wheel mark is made uniform pattern if the process parameters are fixed, sub-surface defect is expected to be distributed non-uniformly because of characteristic of mono-crystalline silicon wafer that has diamond cubic crystal. Consequently it is considered that this phenomenon affects the following process. This paper focused on kinematic analysis of wafer grinding process and simulation program was developed to verify the effect of process variables on wheel mark. And finally, we were able to predict sub-surface defect distribution that considered characteristic of mono-crystalline silicon wafer

  • PDF

랩그라인딩 후 사파이어 웨이퍼의 표면거칠기가 화학기계적 연마에 미치는 영향 (Effect of Surface Roughness of Sapphire Wafer on Chemical Mechanical Polishing after Lap-Grinding)

  • 서준영;이현섭
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.323-329
    • /
    • 2019
  • Sapphire is currently used as a substrate material for blue light-emitting diodes (LEDs). The market for sapphire substrates has expanded rapidly as the use of LEDs has extended into various industries. However, sapphire is classified as one of the most difficult materials to machine due to its hardness and brittleness. Recently, a lap-grinding process has been developed to combine the lapping and diamond mechanical polishing (DMP) steps in a single process. This paper studies, the effect of wafer surface roughness on the chemical mechanical polishing (CMP) process by pressure and abrasive concentration in the lap-grinding process of a sapphire wafer. In this experiment, the surface roughness of a sapphire wafer is measured after lap-grinding by varying the pressure and abrasive concentration of the slurry. CMP is carried out under pressure conditions of 4.27 psi, a plate rotation speed of 103 rpm, head rotation speed of 97 rpm, and slurry flow rate of 170 ml/min. The abrasive concentration of the CMP slurry was 20wt, implying that the higher the surface roughness after lapgrinding, the higher the material removal rate (MRR) in the CMP. This is likely due to the real contact area and actual contact pressure between the rough wafer and polishing pad during the CMP. In addition, wafers with low surface roughness after lap-grinding show lower surface roughness values in CMP processes than wafers with high surface roughness values; therefore, further research is needed to obtain sufficient surface roughness before performing CMP processes.

웨이퍼의 2단 이면공정이 반도체 칩의 휨 강도에 미치는 영향 (The Effect of Dual Wafer Back-Lapping Process on Flexural Strength of Semiconductor Chips)

  • 이성민
    • 한국재료학회지
    • /
    • 제15권3호
    • /
    • pp.183-188
    • /
    • 2005
  • It was studied in this article how the flexural strength of bare silicon chips is influenced by adopting dual wafer back-lapping process. The experimental results showed that an additional finishing process after the conventional grinding process improves the flexural strength of bare chips by more than 2-fold. In particular, this work showed that the proper removal of the grinding marks$(Ra=0.1\;{\mu}m)$existing on the wafer back-surface resulting from the grinding process significantly contiributes to the enhancement of chip strength.