• Title/Summary/Keyword: WSNs (Wireless Sensor Networks)

Search Result 375, Processing Time 0.031 seconds

Review of Simultaneous Wireless Information and Power Transfer in Wireless Sensor Networks

  • Asiedu, Derek Kwaku Pobi;Shin, Suho;Koumadi, Koudjo M.;Lee, Kyoung-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.2
    • /
    • pp.105-116
    • /
    • 2019
  • Recently, there has been an increase in research on wireless sensor networks (WSNs) because they are easy to deploy in applications such as internet-of-things (IoT) and body area networks. However, WSNs have constraints in terms of power, quality-of-service (QoS), computation, and others. To overcome the power constraint issues, wireless energy harvesting has been introduced into WSNs, the application of which has been the focus of many studies. Additionally, to improve system performance in terms of achievable rate, cooperative networks are also being explored in WSNs. We present a review on current research in the area of energy harvesting in WSNs, specifically on the application of simultaneous wireless information and power transfer (SWIPT) in a cooperative sensor network. In addition, we discuss possible future extensions of SWIPT and cooperative networks in WSNs.

A Survey Study on Standard Security Models in Wireless Sensor Networks

  • Lee, Sang Ho
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.4
    • /
    • pp.31-36
    • /
    • 2014
  • Recent advancement in Wireless Sensor Networks (WSNs) has paved the way for WSNs to enable in various environments in monitoring temperature, motion, sound, and vibration. These applications often include the detection of sensitive information from enemy movements in hostile areas or in locations of personnel in buildings. Due to characteristics of WSNs and dealing with sensitive information, wireless sensor nodes tend to be exposed to the enemy or in a hazard area, and security is a major concern in WSNs. Because WSNs pose unique challenges, traditional security techniques used in conventional networks cannot be applied directly, many researchers have developed various security protocols to fit into WSNs. To develop countermeasures of various attacks in WSNs, descriptions and analysis of current security attacks in the network layers must be developed by using a standard notation. However, there is no research paper describing and analyzing security models in WSNs by using a standard notation such as The Unified Modeling Language (UML). Using the UML helps security developers to understand security attacks and design secure WSNs. In this research, we provide standard models for security attacks by UML Sequence Diagrams to describe and analyze possible attacks in the three network layers.

  • PDF

Percolation Theory-Based Exposure-Path Prevention for 3D-Wireless Sensor Networks Coverage

  • Liu, Xiaoshuang;Kang, Guixia;Zhang, Ningbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.126-148
    • /
    • 2015
  • Different from the existing works on coverage problems in wireless sensor networks (WSNs), this paper considers the exposure-path prevention problem by using the percolation theory in three dimensional (3D) WSNs, which can be implemented in intruder detecting applications. In this paper, to avoid the loose bounds of critical density, a bond percolation-based scheme is proposed to put the exposure-path problem into a 3D uniform lattice. Within this scheme, the tighter bonds of critical density for omnidirectional and directional sensor networks under random sensor deployment-a 3D Poisson process are derived. Extensive simulation results show that our scheme generates tighter bounds of critical density with no exposure path in 3D WSNs.

Survey on Security in Wireless Sensor

  • Li, Zhijun;Gong, Guang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6B
    • /
    • pp.233-248
    • /
    • 2008
  • Advances in electronics and wireless communication technologies have enabled the development of large-scale wireless sensor networks (WSNs). There are numerous applications for wireless sensor networks, and security is vital for many of them. However, WSNs suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the lack of infrastructure, all of which impose unique security challenges and make innovative approaches desirable. In this paper, we present a survey on security issues in wireless sensor networks. We address several network models for security protocols in WSNs, and explore the state of the art in research on the key distribution and management schemes, typical attacks and corresponding countermeasures, entity and message authentication protocols, security data aggregation, and privacy. In addition, we discuss some directions of future work.

Using Range Extension Cooperative Transmission in Energy Harvesting Wireless Sensor Networks

  • Jung, Jin-Woo;Ingram, Mary Ann
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.169-178
    • /
    • 2012
  • In this paper, we study the advantages of using range extension cooperative transmission (CT) in multi-hop energy harvesting wireless sensor networks (EH-WSNs) from the network layer perspective. EH-WSNs rely on harvested energy, and therefore, if a required service is energy-intensive, the network may not be able to support the service successfully. We show that CT networks that utilize both range extension CT and non-CT routing can successfully support services that cannot be supported by non-CT networks. For a two-hop toy network, we show that range extension CT can provide better services than non-CT. Then, we provide a method of determining the supportable services that can be achieved by using optimal non-CT and CT routing protocols for EH-WSNs. Using our method and network simulations, we justify our claim that CT networks can provide better services than nonCT networks in EH-WSNs.

Multi-Agent System for Fault Tolerance in Wireless Sensor Networks

  • Lee, HwaMin;Min, Se Dong;Choi, Min-Hyung;Lee, DaeWon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1321-1332
    • /
    • 2016
  • Wireless sensor networks (WSN) are self-organized networks that typically consist of thousands of low-cost, low-powered sensor nodes. The reliability and availability of WSNs can be affected by faults, including those from radio interference, battery exhaustion, hardware and software failures, communication link errors, malicious attacks, and so on. Thus, we propose a novel multi-agent fault tolerant system for wireless sensor networks. Since a major requirement of WSNs is to reduce energy consumption, we use multi-agent and mobile agent configurations to manage WSNs that provide energy-efficient services. Mobile agent architecture have inherent advantages in that they provide energy awareness, scalability, reliability, and extensibility. Our multi-agent system consists of a resource manager, a fault tolerance manager and a load balancing manager, and we also propose fault-tolerant protocols that use multi-agent and mobile agent setups.

A Relative Location based Clustering Algorithm for Wireless Sensor Networks (센서의 상대적 위치정보를 이용한 무선 센서 네트워크에서의 클러스터링 알고리즘)

  • Jung, Woo-Hyun;Chang, Hyeong-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.212-221
    • /
    • 2009
  • This paper proposes a novel centralized clustering algorithm, "RLCA : Relative Location based Clustering Algorithm for Wireless Sensor Networks," for constructing geographically well-distributed clusters in general WSNs. RLCA does not use GPS and controls selection-rate of cluster-head based on distances between sensors and BS. We empirically show that RLCA's energy efficiency is higher than LEACH's.

A Strong Authentication Scheme with User Privacy for Wireless Sensor Networks

  • Kumar, Pardeep;Gurtov, Andrei;Ylianttila, Mika;Lee, Sang-Gon;Lee, HoonJae
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.889-899
    • /
    • 2013
  • Wireless sensor networks (WSNs) are used for many real-time applications. User authentication is an important security service for WSNs to ensure only legitimate users can access the sensor data within the network. In 2012, Yoo and others proposed a security-performance-balanced user authentication scheme for WSNs, which is an enhancement of existing schemes. In this paper, we show that Yoo and others' scheme has security flaws, and it is not efficient for real WSNs. In addition, this paper proposes a new strong authentication scheme with user privacy for WSNs. The proposed scheme not only achieves end-party mutual authentication (that is, between the user and the sensor node) but also establishes a dynamic session key. The proposed scheme preserves the security features of Yoo and others' scheme and other existing schemes and provides more practical security services. Additionally, the efficiency of the proposed scheme is more appropriate for real-world WSNs applications.

TriSec: A Secure Data Framework for Wireless Sensor Networks Using Authenticated Encryption

  • Kumar, Pardeep;Cho, Sang-Il;Lee, Dea-Seok;Lee, Young-Dong;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • Wireless sensor networks (WSNs) are an emerging technology and offers economically viable monitoring solution to many challenging applications. However, deploying new technology in hostile environment, without considering security in mind has often proved to be unreasonably unsecured. Apparently, security techniques face many critical challenges in WSNs like data security and secrecy due to its hostile deployment nature. In order to resolve security in WSNs, we propose a novel and efficient secure framework called TriSec: a secure data framework for wireless sensor networks to attain high level of security. TriSec provides data confidentiality, authentication and data integrity to sensor networks. TriSec supports node-to-node encryption using PingPong-128 stream cipher based-privacy. A new PingPong-MAC (PP-MAC) is incorporated with PingPong stream cipher to make TriSec framework more secure. PingPong-128 is fast keystream generation and it is very suitable for sensor network environment. We have implemented the proposed scheme on wireless sensor platform and our result shows their feasibility.

The Wormhole Routing Attack in Wireless Sensor Networks (WSN)

  • Sharif, Lukman;Ahmed, Munir
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.177-184
    • /
    • 2010
  • Secure routing is vital to the acceptance and use of Wireless Sensor Networks (WSN) for many applications. However, providing secure routing in WSNs is a challenging task due to the inherently constrained capabilities of sensor nodes. Although a wide variety of routing protocols have been proposed for WSNs, most do not take security into account as a main goal. Routing attacks can have devastating effects on WSNs and present a major challenge when designing robust security mechanisms for WSNs. In this paper, we examine some of the most common routing attacks in WSNs. In particular, we focus on the wormhole routing attack in some detail. A variety of countermeasures have been proposed in the literature for such attacks. However, most of these countermeasures suffer from flaws that essentially render them ineffective for use in large scale WSN deployments. Due to the inherent constraints found in WSNs, there is a need for lightweight and robust security mechanisms. The examination of the wormhole routing attack and some of the proposed countermeasures makes it evident that it is extremely difficult to retrofit existing protocols with defenses against routing attacks. It is suggested that one of the ways to approach this rich field of research problems in WSNs could be to carefully design new routing protocols in which attacks such as wormholes can be rendered meaningless.