• Title/Summary/Keyword: WSN(Wireless sensor network)

Search Result 645, Processing Time 0.029 seconds

Time Synchronization by Consecutive Broadcast for Wireless Sensor Networks (연속 방송 패킷 전송에 의한 무선 센서 네트워크의 시각 동기화)

  • Bae, Shi-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.19C no.3
    • /
    • pp.209-214
    • /
    • 2012
  • Time synchronization is important role in a network, especially in Wireless Sensor Network (WSN) which is required for time-critical applications such as surveillance, tracking, data fusion and scheduling. Time synchronization in WSN should meet the other different requirements than the one in other networks because WSN has critical resource constraints, especially power consumption. This paper presents a new time synchronization scheme for WSN, which is energy efficient by reducing communication overhead. Simulation test shows this new scheme has better energy efficiency and performance of accuracy than existing schemes proposed previously.

A Survey on Time Synchronization Protocols for Wireless Sensor Networks (무선 센서 네트워크용 시각 동기화 프로토콜의 고찰)

  • Bae, Shi-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.6
    • /
    • pp.61-69
    • /
    • 2014
  • Various Time Synchronization protocols considering for the characteristics of WSN(Wireless Sensor Network) have been developed, because a time relationship plays an important role in many WSN applications, as well. Synchronization accuracy as well as constraints of energy should be considered for WSN Time Synchronization protocols, especially. In this paper, I analyze Time Synchronization protocols for WSN after classifying these protocols with a new criteria (i.e. power consumption). So, this method will contribute to evaluating and comparing WSN Time Synchronization protocols in respect of power consumption.

An Energy Efficient Routing Algorithm based on Center of Local Clustering in Wireless Sensor Networks (무선센서 네트워크에서의 지역-중앙 클러스터 라우팅 방법)

  • He, Jin Ming;Rhee, Chung-Sei
    • Convergence Security Journal
    • /
    • v.14 no.2
    • /
    • pp.43-50
    • /
    • 2014
  • Recently, lot of researches for the multi-level protocol have been done to balance the sensor node energy consumption of WSN and improve the node efficiency to extend the life of the entire network. Especially in multi-hop protocol, a variety of models have been proposed to improve energy efficiency and apply it to WSN protocol. In this paper, we analyze LEACH algorithm and propose new method based on center of local clustering routing algorithm in wireless sensor networks. We also perform NS-2 simulation to show the performance of our model.

Quality of Service using Min-Max Data Size Scheduling in Wireless Sensor Networks

  • Revathi, A.;Santhi, S.G.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.327-333
    • /
    • 2022
  • Wireless Sensor Networks (WSNs) plays an important role in our everyday life. WSN is distributed in all the places. Nowadays WSN devices are developing our world as smart and easy to access and user-friendly. The sensor is connected to all the resources based on the uses of devices and the environment [1]. In WSN, Quality of Service is based on time synchronization and scheduling. Scheduling is important in WSN. The schedule is based on time synchronization. Min-Max data size scheduling is used in this proposed work. It is used to reduce the Delay & Energy. In this proposed work, Two-hop neighboring node is used to reduce energy consumption. Data Scheduling is used to identify the shortest path and transmit the data based on weightage. The data size is identified by three size of measurement Min, Max and Medium. The data transmission is based on time, energy, delivery, etc., the data are sent through the first level shortest path, then the data size medium, the second level shortest path is used to send the data, then the data size is small, it should be sent through the third level shortest path.

The Optimum Configuration of Vehicle Parking Guide System based on Ad Hoc Wireless Sensor Network

  • Lim, Myoung-Seob;Xu, Yihu;Lee, Chung-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.199-203
    • /
    • 2011
  • The wireless sensor network (WSN) based on ad hoc network is applied to vehicle parking guide system without parking guide man at area or building with large scale of parking lots. The optimum number of cluster heads was derived for getting the minimum power consumption as well as time delay. Through the theoretical analysis of power consumption and time delay with the number of cluster heads in wireless sensor network, it was found that there exists the minimum point in the variation of power consumption and time delay according to the number of cluster heads.

A Power-based Pipelined-forwarding MAC Protocol for Energy Harvesting Wireless Sensor Networks (에너지 하베스팅 무선 센서네트워크을 위한 전력기반 Pipelined-forwarding MAC프로토콜)

  • Shim, Kyuwook;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.98-101
    • /
    • 2019
  • In this paper, we propose the power-based pipelined-forwarding MAC protocol which can select relay nodes according to the residual power and energy harvesting rate in EH-WSN (energy-harvesting wireless sensor networks). The proposed MAC follows a pipelined-forwarding scheme in which nodes repeatedly sleep and wake up in an EH-WSN environment and data is continuously transmitted from a high-level node to a low-level node. The sleep interval is adaptively controlled so that nodes with low energy harvesting rate can be charged sufficiently, thereby minimizing the transmission delay and increasing the network lifetime. Simulation shows that the proposed MAC protocol improves the balance of residual power and network lifetime.

A Revised Timing-sync Protocol for Sensor Networks by a Polling Method

  • Bae, Shi-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.23-28
    • /
    • 2015
  • TPSN(Timing-sync Protocol for Sensor Networks), the representative of time synchronization protocol for WSN(wireless sensor networks), was developed to provide higher synchronization accuracy and energy efficiency. So, TPSN's approach has been referenced by so many other WSN synchronization schemes till now. However, TPSN has a collision problem due to simultaneous transmission among competing nodes, which causes more network convergence delay for a network-wide synchronization. A Polling-based scheme for TPSN is proposed in this paper. The proposed scheme not only shortens network-wide synchronization time of TPSN, but also reduce collision traffic which lead to needless power consumption. The proposed scheme's performance has been evaluated and compared with an original scheme by simulation. The results are shown to be better than the original algorithm used in TPSN.

A Study of Data Maintenance management of Wireless Sensor Network (무선센서 네트워크에서 데이터 유지관리에 관한 연구)

  • Xu, Chen-lin;Lee, Hyun Chang;Shin, Seong Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.217-220
    • /
    • 2014
  • Wireless sensor network(WSN) consists by a large number of low-cost micro-sensor nodes, collaborate to achieve the perception of information collection, processing and transmission tasks in deployment area. It can be widely used in national defense, intelligent transportation, medical care, environmental monitoring, precision agriculture, and industrial automation and many other areas. One of the key technologies of sensor networks is the data maintenance management technology. In this paper we analyze the data management technology of wireless sensor network and pointed their problems.

  • PDF

A study on the event processing methods for ubiquitous sensor network (유비쿼터스 센서 네트워크를 위한 이벤트 처리 기법에 관한 연구)

  • Cho, Yang-Hyun;Park, Yong-Min;Kim, Hyeon-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.137-147
    • /
    • 2013
  • The RFID(Radio Frequency Identification) and the WSN(Wireless Sensor Network) have technical similarities and mutual effects, they have been recognized to be studied separately, and sufficient studies have not been conducted on the technical integration of the RFID and the WSN. Therefore, EPC global which realized the issue proposed the EPC(Electronic Produce Code) Sensor Network to efficiently integrate and interoperate the RFID and WSN technologies based on the international standard EPC global network. The proposed EPC Sensor Network technology uses the Complex Event Processing method in the middleware to integrate data occurring through the RFID and the WSN in a single environment and to interoperate the events based on the EPC global network. However, as the EPC Sensor Network technology continuously performs its operation even in the case that the minimum conditions are not to be met to find complex events in the middleware, its operation cost rises. Therefore, to address the problems of the existing system, we defined the minimum conditions of the complex events to detect unnecessary complex events in the middleware, and proposed an algorithm that can extract complex events only when the minimum conditions are to be met. To examine the minimum conditions, a index and a query index are used to extract complex events. To evaluate the performance of the proposed methods, In the case of the method of extracting complex events based on a bitmap index, we used the existing extraction method and NS2 simulation to evaluate its performance and thus to show its good performance in terms of the number of operation and the processing time for the complex events.

A Study on Energy Efficient Self-Organized Clustering for Wireless Sensor Networks (무선 센서 네트워크의 자기 조직화된 클러스터의 에너지 최적화 구성에 관한 연구)

  • Lee, Kyu-Hong;Lee, Hee-Sang
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.3
    • /
    • pp.180-190
    • /
    • 2011
  • Efficient energy consumption is a critical factor for deployment and operation of wireless sensor networks (WSNs). To achieve energy efficiency there have been several hierarchical routing protocols that organize sensors into clusters where one sensor is a cluster-head to forward messages received from its cluster-member sensors to the base station of the WSN. In this paper, we propose a self-organized clustering method for cluster-head selection and cluster based routing for a WSN. To select cluster-heads and organize clustermembers for each cluster, every sensor uses only local information and simple decision mechanisms which are aimed at configuring a self-organized system. By these self-organized interactions among sensors and selforganized selection of cluster-heads, the suggested method can form clusters for a WSN and decide routing paths energy efficiently. We compare our clustering method with a clustering method that is a well known routing protocol for the WSNs. In our computational experiments, we show that the energy consumptions and the lifetimes of our method are better than those of the compared method. The experiments also shows that the suggested method demonstrate properly some self-organized properties such as robustness and adaptability against uncertainty for WSN's.