• Title/Summary/Keyword: WMR

Search Result 50, Processing Time 0.029 seconds

Physicochemical Properties of Rice Flour of Different Cultivars using Wet and Dry Milling Processes (제분방법에 따른 품종별 쌀가루의 이화학적 특성 및 소화율)

  • Park, Jiyoung;Lee, Seuk-Ki;Park, Hye-Young;Choi, Hye-Sun;Cho, Dong-Hwa;Lee, Kyung Ha;Han, Sang-Ik;Cho, Jun Hyeon;Oh, Sea-Kwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.3
    • /
    • pp.184-192
    • /
    • 2017
  • Rice flours from five rice (Oryza sativa L.) varieties with different amylose content were prepared by both wet and dry milling processes. The moisture content of wet-milled rice flours (WMR) was approximately three-times higher than that of dry-milled rice flours (DMR). Water absorption index (WAI), water solubility index (WSI), and swelling power (SP) increased in proportion to temperature. The WAI, WSI and SP values of DMR were higher than those of WMR. Baeokchal (BOC), which is a waxy rice cultivar, had a significantly high WSI value. Pasting properties of DMR, except for the BOC cultivar, resulted in an increase in peak, trough, final, and setback viscosities. The levels of resistant starch in four cultivars, except for Dodamssal (DDS), were under 1%, irrespective of the milling process, whereas the resistant starch contents of DMR and WMR in DDS were 9.18% and 6.27%, respectively. In vitro digestibility of WMR was higher than that of DMR, and the estimated glycemic index of the rice flour varieties ranged from 57.6 to 81.3. Damaged starch content of WMR was less than that of DMR; in addition, a negative correlation was observed between the amylose and damaged starch contents of WMR. These results suggest that the properties of rice flour vary depending on the milling method and flour variety, and could be a reference for selecting the appropriate processing method.

Modeling and Adaptive Motion Tracking Control of Two-Wheeled Welding Mobile Robot (WMR) (용접용 이륜 이동로봇의 모델링 및 적응 추종 제어)

  • Suh, Jin-Ho;Bui, Tring Hieu;Nguyen, Tan Tien;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.786-791
    • /
    • 2003
  • This paper proposes an adaptive control algorithm for nonholonomic mobile robots with unknown parameters and the proposed control method is used in numerical simulations for applying to a practical twowheeled welding mobile robot(WMR). The proposed adaptive controller to track an arbitrary given welding path is designed by using back-stepping technique and is derived for a nonlinear model under the assumption such that the system parameters are partially known. Moreover, the proposed adaptive control system is stable in the sense of Lyapunov stability. Inertia moments of system are considered to be unknown parameters and their values can be estimated simply by using update laws proposed in an adaptive control scheme of this research. The simulation results are provided to show the effectiveness of the accurate tracking capability of the proposed controller for two-wheeled welding mobile robot with a smooth curved reference welding path.

  • PDF

Trajectory Tracking Control for Two Wheeled Mobile Robot using Fuzzy Sliding Mode Control based Hyperbolic Function (하이퍼볼릭 함수 기반의 퍼지 슬라이딩 모드 제어를 이용한 2바퀴 이동로봇의 경로 추종제어)

  • Lim, Jong-Uk;Lee, Sang-Jae;Chai, Chang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.28-34
    • /
    • 2014
  • In this paper, we propose a trajectory tracking controller for a two-wheeled mobile robot (WMR) with nonholonomic constraints using a fuzzy sliding-mode controller-based hyperbolic function. The proposed controller is composed of two separate controllers. The sliding-mode controller is used for attitude control of the WMR, and the fuzzy controller-based hyperbolic function is designed to adjust the reach time of the sliding-mode control. Simulation results on a linear and a circular trajectory show that the proposed controller improves the control performance. The proposed controller reduces the reach time by as much as 47% compared to the controller proposed by Xie et al.

Sliding Mode Control of Two-Wheeled Welding Mobile Robot for Tracking Smooth Curved Welding Path

  • Chung, Tan-Lam;Bui, Trong-Hieu;Nguyen, Tan-Tien;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1094-1106
    • /
    • 2004
  • In this paper, a nonlinear controller based on sliding mode control is applied to a two-wheeled Welding Mobile Robot (WMR) to track a smooth curved welding path at a constant velocity of the welding point. The mobile robot is considered in terms of dynamics model in Cartesian coordinates under the presence of external disturbance, and its parameters are exactly known. It is assumed that the disturbance satisfies the matching condition with a known boundary. To obtain the controller, the tracking errors are defined, and the two sliding surfaces are chosen to guarantee that the errors converge to zero asymptotically. Two cases are to be considered: fixed torch and controllable torch. In addition, a simple way of measuring the errors is introduced using two potentiometers. The simulation and experiment on a two-wheeled welding mobile robot are provided to show the effectiveness of the proposed controller.

Two-Wheeled Welding Mobile Robot for Tracking a Smooth Curved Welding Path Using Adaptive Sliding-Mode Control Technique

  • Dung, Ngo Manh;Duy, Vo Hoang;Phuong, Nguyen Thanh;Kim, Sang-Bong;Oh, Myung-Suck
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.283-294
    • /
    • 2007
  • In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding surface vector including new boundizing function is proposed and applied to a two-wheeled welding mobile robot (WMR). This controller makes the welding point of WMR achieve tracking a reference point which is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To design the controller, the tracking error vector is defined, and then the sliding surface vector including new boundizing function and the adaptation laws are chosen to guarantee that the error vector converges to zero asymptotically. The stability of the dynamic system is shown through the Lyapunov method. In addition, a simple way of measuring the errors by potentiometers is introduced. The simulations and experimental results are shown to prove the effectiveness of the proposed controller.

Leader-Following Sampled-Data Control of Wheeled Mobile Robots using Clock Dependent Lyapunov Function (시간 종속적인 리아프노프 함수를 이용한 모바일 로봇의 선도-추종 샘플 데이터 제어)

  • Ye, Donghee;Han, Seungyong;Lee, Sangmoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.4
    • /
    • pp.119-127
    • /
    • 2021
  • The aim of this paper is to propose a less conservative stabilization condition for leader-following sampled-data control of wheeled mobile robot (WMR) systems by using a clock-dependent Lyapunov function (CDLF) with looped functionals. In the leader-following WMR system, the state and input of the leader robot are measured by digital devices mounted on the following robot, and they are utilized to construct the sampled-data controller of the following robot. To design the sampled-data controller, a stabilization condition is derived by using the CDLF with looped functionals, and formulated in terms of sum of squares (SOS). The considered Lyapunov function is a polynomial form with respect to the clock related to the transmitted sampling instants. As the degree of the Lyapunov function increases, the stabilization condition becomes less conservative. This ensures that the designed controller is able to stabilize the system with a larger maximum sampling interval. The simulation results are provided to demonstrate the effectiveness of the proposed method.

A Speaker Pruning Method for Reducing Calculation Costs of Speaker Identification System (화자식별 시스템의 계산량 감소를 위한 화자 프루닝 방법)

  • 김민정;오세진;정호열;정현열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.457-462
    • /
    • 2003
  • In this paper, we propose a speaker pruning method for real-time processing and improving performance of speaker identification system based on GMM(Gaussian Mixture Model). Conventional speaker identification methods, such as ML (Maximum Likelihood), WMR(weighting Model Rank), and MWMR(Modified WMR) we that frame likelihoods are calculated using the whole frames of each input speech and all of the speaker models and then a speaker having the biggest accumulated likelihood is selected. However, in these methods, calculation cost and processing time become larger as the increase of the number of input frames and speakers. To solve this problem in the proposed method, only a part of speaker models that have higher likelihood are selected using only a part of input frames, and identified speaker is decided from evaluating the selected speaker models. In this method, fm can be applied for improving the identification performance in speaker identification even the number of speakers is changed. In several experiments, the proposed method showed a reduction of 65% on calculation cost and an increase of 2% on identification rate than conventional methods. These results means that the proposed method can be applied effectively for a real-time processing and for improvement of performance in speaker identification.

A Design of Controller for 4-Wheel 2-D.O.F. Mobile Robot Using Fuzzy-Genetic algorithms

  • Kim, Sangwon;Kim, Sunghoe;Sunho Cho;chongkug
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.607-612
    • /
    • 1998
  • In this paper, a controller using fuzzy-genetic algorithms is proposed for pat-tracking of WMR. A fuzzy controller is implemented so as to adjust appropriate crossover rate and mutation rate. A genetic algorithms is also implemented to have adaptive adjustment of control gain during optimizing process. To check effectiveness of this algorithms, computer simulation is applied.

  • PDF

Path Following Control For Mobile Robots Using Model Algorithm Control (모델 알고리즘 제어를 이용한 이동 로봇의 경로 추적 제어)

  • Zhang, Yuanliang;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.261-262
    • /
    • 2007
  • This paper proposed a model algorithm control (MAC) method for trajectory tracking control of the differentially steeredwheeled mobile robots (WMRs) subject to nonholonomic constraint. The dynamic model of the wheeled mobile robot is presented and used as the model to be controlled. The performance of the proposed control algorithm is verified via computer simulations in which the WMR is controlled to track several different reference paths. It is shown that the control strategy is feasible.

  • PDF

Kinematic Modeling for Position Feedback Control of an 2 - D.O.F Wheeled Mobile Robot (2-자유도 이동 로보트의 위치 궤환제어를 위한 기구학 모델링)

  • 정용욱;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.27-40
    • /
    • 1996
  • This paper proposed a kinematic modeling methodlogy and feedback control system based on kinematics for 2 degrees of freedom of 4-wheeled mobile robot. We assigned coordinate systems to specify the transformation matirx and write the kinematic equation of motion. We derived the actuated inverse and sensed forwared solution for the calculation of actual robot orientation and the desired robot orientation. It is the most significant error and has the largest impact on the motion accuracy. To calculate the WMR position in real time, we introduced the dead-reckoning algorithm and composed two feedback control system that is based on kinematics. Through the simulation result, we compare with the ffedback control system for position control.

  • PDF