• Title/Summary/Keyword: WLS (Weighted Least Squares)

Search Result 23, Processing Time 0.03 seconds

A Study on the Optimum Scheme for Determination of Operation Time of Line Feeders in Automatic Combination Weighers

  • Keraita James N.;Kim Kyo-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1567-1575
    • /
    • 2006
  • In an automatic combination weigher, the line feeders distribute the product to several weighing hoppers. The ability to supply appropriate amount of product to the weighing hoppers for each combination operation is crucial for the overall performance. Determining the right duration of operating a line feeder to supply a given amount of product becomes very challenging in case of products which are irregular in volume or specific gravity such as granular secondary processed foods. In this research, several schemes were investigated to determine the best way for a line feeder to approximate the next operating time in order to supply a set amount of irregular goods to the corresponding weighing hopper. Results obtained show that a weighted least squares method (WLS) employing 10 data points is the most effective in determining the operating times of line feeders.

Modified WLS Autofocus Algorithm for a Spotlight Mode SAR Image Formation (스포트라이트 모드 SAR 영상 형성에서의 수정된 가중치 최소 자승기법에 의한 자동 초점 알고리즘)

  • Hwang, Jeonghun;Shin, Hyun-Ik;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.894-901
    • /
    • 2017
  • In the existence of motion, azimuth phase error due to accuracy limitation of GPS/IMU and system delay is unavoidable and it is essential to apply autofocus to estimate and compensate the azimuth phase error. In this paper, autofocus algorithm using MWLS(Modified WLS) is proposed. It shows the robust performance compared with original WLS using new target selection/sorting metric and iterative azimuth phase estimation technique. SAR raw data obtained in a captive flight test is used to validate the performance of the proposed algorithm.

Enhancing Focus Measurements in Shape From Focus Through 3D Weighted Least Square (3차원 가중최소제곱을 이용한 SFF에서의 초점 측도 개선)

  • Mahmood, Muhammad Tariq;Ali, Usman;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.66-71
    • /
    • 2019
  • In shape from focus (SFF) methods, the quality of image focus volume plays a vital role in the quality of 3D shape reconstruction. Traditionally, a linear 2D filter is applied to each slice of the image focus volume to rectify the noisy focus measurements. However, this approach is problematic because it also modifies the accurate focus measurements that should ideally remain intact. Therefore, in this paper, we propose to enhance the focus volume adaptively by applying 3-dimensional weighted least squares (3D-WLS) based regularization. We estimate regularization weights from the guidance volume extracted from the image sequences. To solve 3D-WLS optimization problem efficiently, we apply a technique to solve a series of 1D linear sub-problems. Experiments conducted on synthetic and real image sequences demonstrate that the proposed method effectively enhances the image focus volume, ultimately improving the quality of reconstructed shape.

A Marginal Probability Model for Repeated Polytomous Response Data

  • Choi, Jae-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.577-585
    • /
    • 2008
  • This paper suggests a marginal probability model for analyzing repeated polytomous response data when some factors are nested in others in treatment structures on a larger experimental unit. As a repeated measures factor, time is considered on a smaller experimental unit. So, two different experiment sizes are considered. Each size of experimental unit has its own design structure and treatment structure, and the marginal probability model can be constructed from the structures for each size of experimental unit. Weighted least squares(WLS) methods are used for estimating fixed effects in the suggested model.

  • PDF

Influence Assessment in Robust Regression

  • Sohn, Bang-Yong;Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.21-32
    • /
    • 1997
  • Robust regression based on M-estimator reduces and/or bounds the influence of outliers in the y-direction only. Therefore, when several influential observations exist, diagnostics in the robust regression is required in order to detect them. In this paper, we propose influence diagnostics in the robust regression based on M-estimator and its one-step version. Noting that M-estimator can be obtained through iterative weighted least squares regression by using internal weights, we apply the weighted least squares (WLS) regression diagnostics to robust regression.

  • PDF

A Modified Weighted Least Squares Range Estimator for ASM (Anti-Ship Missile) Application

  • Whang Ick-Ho;Ra Won-Sang;Ahn Jo-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.486-492
    • /
    • 2005
  • A practical recursive WLS (weighted least squares) algorithm is proposed to estimate relative range using LOS (line-of-sight) information for ASM (anti-ship missile) application. Apart from the previous approaches based on the EKF (extended Kalman filter), to ensure good convergence properties in long range engagement situations, the proposed scheme utilizes LOS rate measurements instead of conventionally used LOS angle measurements. The estimation error property for the proposed filter is investigated and a simple error compensator is devised to enhance its estimation error performances. Simulation results indicate that the proposed filter produces very accurate range estimates with extremely small computations.

Optimal design of homogeneous earth dams by particle swarm optimization incorporating support vector machine approach

  • Mirzaei, Zeinab;Akbarpour, Abolfazl;Khatibinia, Mohsen;Siuki, Abbas Khashei
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.709-727
    • /
    • 2015
  • The main aim of this study is to introduce optimal design of homogeneous earth dams with oblique and horizontal drains based on particle swarm optimization (PSO) incorporating weighted least squares support vector machine (WLS-SVM). To achieve this purpose, the upstream and downstream slopes of earth dam, the length of oblique and horizontal drains and angle among the drains are considered as the design variables in the optimization problem of homogeneous earth dams. Furthermore, the seepage through dam body and the weight of dam as objective functions are minimized in the optimization process simultaneously. In the optimization procedure, the stability coefficient of the upstream and downstream slopes and the seepage through dam body as the hydraulic responses of homogeneous earth dam are required. Hence, the hydraulic responses are predicted using WLS-SVM approach. The optimal results of illustrative examples demonstrate the efficiency and computational advantages of PSO with WLS-SVM in the optimal design of homogeneous earth dams with drains.

A Modified Weighted Least Squares Approach to Range Estimation Problem (보완 가중 최소자승기법을 이용한 피동거리 추정필터 설계)

  • Whang, Ick-Ho;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2088-2090
    • /
    • 2003
  • A practical recursive weighted least square(WLS) solution is proposed to solve the passive ranging problem. Apart from the previous works based on the extended Kalman filter(EKF), to ensure the convergency at long-range, the proposed scheme makes use of line-of-sight(LOS) rate instead of bearing information. The influence of LOS rate measurement errors is investigated and it is asserted that the WLS estimates contain bias and scale factor errors. Together with simple compensation algorithm, the estimation errors of proposed filter can be reduced dramatically.

  • PDF

Weighted Least-Squares Design and Parallel Implementation of Variable FIR Filters

  • Deng, Tian-Bo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.686-689
    • /
    • 2002
  • This paper proposes a weighted least-squares(WLS) method for designing variable one-dimensional (1-D) FIR digital filters with simultaneously variable magnitude and variable non-integer phase-delay responses. First, the coefficients of a variable FIR filter are represented as the two-dimensional (2-D) polynomials of a pair of spectral parameters: one is for tuning the magnitude response, and the other is for varying its non-integer phase-delay response. Then the optimal coefficients of the 2-D polynomials are found by minimizing the total weighted squared error of the variable frequency response. Finally, we show that the resulting variable FIR filter can be implemented in a parallel form, which is suitable for high-speed signal processing.

  • PDF

Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine

  • Khatibinia, Mohsen;Feizbakhsh, Abdosattar;Mohseni, Ehsan;Ranjbar, Malek Mohammad
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1065-1082
    • /
    • 2016
  • The main aim of this study is to predict the compressive and flexural strengths of self-compacting mortar (SCM) containing $nano-SiO_2$, $nano-Fe_2O_3$ and nano-CuO using wavelet-based weighted least squares-support vector machines (WLS-SVM) approach which is called WWLS-SVM. The WWLS-SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS-SVM and WWLS-SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V-funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time-consuming laboratory tests can be eliminated.