• 제목/요약/키워드: WLS (Weighted Least Squares)

검색결과 23건 처리시간 0.025초

A Study on the Optimum Scheme for Determination of Operation Time of Line Feeders in Automatic Combination Weighers

  • Keraita James N.;Kim Kyo-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1567-1575
    • /
    • 2006
  • In an automatic combination weigher, the line feeders distribute the product to several weighing hoppers. The ability to supply appropriate amount of product to the weighing hoppers for each combination operation is crucial for the overall performance. Determining the right duration of operating a line feeder to supply a given amount of product becomes very challenging in case of products which are irregular in volume or specific gravity such as granular secondary processed foods. In this research, several schemes were investigated to determine the best way for a line feeder to approximate the next operating time in order to supply a set amount of irregular goods to the corresponding weighing hopper. Results obtained show that a weighted least squares method (WLS) employing 10 data points is the most effective in determining the operating times of line feeders.

스포트라이트 모드 SAR 영상 형성에서의 수정된 가중치 최소 자승기법에 의한 자동 초점 알고리즘 (Modified WLS Autofocus Algorithm for a Spotlight Mode SAR Image Formation)

  • 황정훈;신현익;김환우
    • 한국전자파학회논문지
    • /
    • 제28권11호
    • /
    • pp.894-901
    • /
    • 2017
  • 요동이 존재하는 환경에서 항법 장비 정확도의 한계 및 시스템 지연 오차 등으로 방위 위상 오차가 필연적으로 발생하는 항공기 탑재 SAR(Synthetic Aperture Radar)의 경우, 방위 위상 오차를 신호처리 알고리즘으로 추정하고 보상하는 자동 초점(Autofocus: AF) 기법 적용이 필수적이다. 본 논문에서는 수정된 가중치 최소 자승기법(Modified Weighted Least-Squares: MWLS)에 의한 자동 초점 알고리즘을 제안한다. 새로운 방식의 표적 선정 및 정렬과 방위 방향 반복 위상 추정 방식을 통해 기존 WLS보다 견고한 성능을 보이게 된다. 비행 시험을 통해 획득한 SAR 원시데이터에 제안한 방식을 적용하고 성능을 분석하여 제안한 방식의 유효함과 우수성을 입증하도록 한다.

3차원 가중최소제곱을 이용한 SFF에서의 초점 측도 개선 (Enhancing Focus Measurements in Shape From Focus Through 3D Weighted Least Square)

  • 무하마드 타릭 마흐무드;우스만 알리;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.66-71
    • /
    • 2019
  • In shape from focus (SFF) methods, the quality of image focus volume plays a vital role in the quality of 3D shape reconstruction. Traditionally, a linear 2D filter is applied to each slice of the image focus volume to rectify the noisy focus measurements. However, this approach is problematic because it also modifies the accurate focus measurements that should ideally remain intact. Therefore, in this paper, we propose to enhance the focus volume adaptively by applying 3-dimensional weighted least squares (3D-WLS) based regularization. We estimate regularization weights from the guidance volume extracted from the image sequences. To solve 3D-WLS optimization problem efficiently, we apply a technique to solve a series of 1D linear sub-problems. Experiments conducted on synthetic and real image sequences demonstrate that the proposed method effectively enhances the image focus volume, ultimately improving the quality of reconstructed shape.

A Marginal Probability Model for Repeated Polytomous Response Data

  • Choi, Jae-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권2호
    • /
    • pp.577-585
    • /
    • 2008
  • This paper suggests a marginal probability model for analyzing repeated polytomous response data when some factors are nested in others in treatment structures on a larger experimental unit. As a repeated measures factor, time is considered on a smaller experimental unit. So, two different experiment sizes are considered. Each size of experimental unit has its own design structure and treatment structure, and the marginal probability model can be constructed from the structures for each size of experimental unit. Weighted least squares(WLS) methods are used for estimating fixed effects in the suggested model.

  • PDF

Influence Assessment in Robust Regression

  • Sohn, Bang-Yong;Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제4권1호
    • /
    • pp.21-32
    • /
    • 1997
  • Robust regression based on M-estimator reduces and/or bounds the influence of outliers in the y-direction only. Therefore, when several influential observations exist, diagnostics in the robust regression is required in order to detect them. In this paper, we propose influence diagnostics in the robust regression based on M-estimator and its one-step version. Noting that M-estimator can be obtained through iterative weighted least squares regression by using internal weights, we apply the weighted least squares (WLS) regression diagnostics to robust regression.

  • PDF

A Modified Weighted Least Squares Range Estimator for ASM (Anti-Ship Missile) Application

  • Whang Ick-Ho;Ra Won-Sang;Ahn Jo-Young
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.486-492
    • /
    • 2005
  • A practical recursive WLS (weighted least squares) algorithm is proposed to estimate relative range using LOS (line-of-sight) information for ASM (anti-ship missile) application. Apart from the previous approaches based on the EKF (extended Kalman filter), to ensure good convergence properties in long range engagement situations, the proposed scheme utilizes LOS rate measurements instead of conventionally used LOS angle measurements. The estimation error property for the proposed filter is investigated and a simple error compensator is devised to enhance its estimation error performances. Simulation results indicate that the proposed filter produces very accurate range estimates with extremely small computations.

Optimal design of homogeneous earth dams by particle swarm optimization incorporating support vector machine approach

  • Mirzaei, Zeinab;Akbarpour, Abolfazl;Khatibinia, Mohsen;Siuki, Abbas Khashei
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.709-727
    • /
    • 2015
  • The main aim of this study is to introduce optimal design of homogeneous earth dams with oblique and horizontal drains based on particle swarm optimization (PSO) incorporating weighted least squares support vector machine (WLS-SVM). To achieve this purpose, the upstream and downstream slopes of earth dam, the length of oblique and horizontal drains and angle among the drains are considered as the design variables in the optimization problem of homogeneous earth dams. Furthermore, the seepage through dam body and the weight of dam as objective functions are minimized in the optimization process simultaneously. In the optimization procedure, the stability coefficient of the upstream and downstream slopes and the seepage through dam body as the hydraulic responses of homogeneous earth dam are required. Hence, the hydraulic responses are predicted using WLS-SVM approach. The optimal results of illustrative examples demonstrate the efficiency and computational advantages of PSO with WLS-SVM in the optimal design of homogeneous earth dams with drains.

보완 가중 최소자승기법을 이용한 피동거리 추정필터 설계 (A Modified Weighted Least Squares Approach to Range Estimation Problem)

  • 황익호;나원상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2088-2090
    • /
    • 2003
  • A practical recursive weighted least square(WLS) solution is proposed to solve the passive ranging problem. Apart from the previous works based on the extended Kalman filter(EKF), to ensure the convergency at long-range, the proposed scheme makes use of line-of-sight(LOS) rate instead of bearing information. The influence of LOS rate measurement errors is investigated and it is asserted that the WLS estimates contain bias and scale factor errors. Together with simple compensation algorithm, the estimation errors of proposed filter can be reduced dramatically.

  • PDF

Weighted Least-Squares Design and Parallel Implementation of Variable FIR Filters

  • Deng, Tian-Bo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.686-689
    • /
    • 2002
  • This paper proposes a weighted least-squares(WLS) method for designing variable one-dimensional (1-D) FIR digital filters with simultaneously variable magnitude and variable non-integer phase-delay responses. First, the coefficients of a variable FIR filter are represented as the two-dimensional (2-D) polynomials of a pair of spectral parameters: one is for tuning the magnitude response, and the other is for varying its non-integer phase-delay response. Then the optimal coefficients of the 2-D polynomials are found by minimizing the total weighted squared error of the variable frequency response. Finally, we show that the resulting variable FIR filter can be implemented in a parallel form, which is suitable for high-speed signal processing.

  • PDF

Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine

  • Khatibinia, Mohsen;Feizbakhsh, Abdosattar;Mohseni, Ehsan;Ranjbar, Malek Mohammad
    • Computers and Concrete
    • /
    • 제18권6호
    • /
    • pp.1065-1082
    • /
    • 2016
  • The main aim of this study is to predict the compressive and flexural strengths of self-compacting mortar (SCM) containing $nano-SiO_2$, $nano-Fe_2O_3$ and nano-CuO using wavelet-based weighted least squares-support vector machines (WLS-SVM) approach which is called WWLS-SVM. The WWLS-SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS-SVM and WWLS-SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V-funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time-consuming laboratory tests can be eliminated.