• 제목/요약/키워드: WI-38 cells

검색결과 24건 처리시간 0.033초

MZR을 이용한 2.4 GHz WiFi 대역 소형 단말기 안테나 설계 (Design of Miniaturization Terminal Antenna for 2.4 GHz WiFi Band with MZR)

  • 이영훈
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.14-21
    • /
    • 2019
  • 본 논문에서는 MZR을 사용하여 2.4GHz WiFi대역에서 동작하는 온 보드(on-board) 초소형 안테나를 구현하였다. 설계한 안테나는 소형 단말기 PCB의 크기가 $78{\times}38{\times}0.8mm^3$이며, 시스템의 크기는 $63{\times}38{\times}0.8mm^3$이고, 방사부의 크기는 $15{\times}38{\times}0.8mm^3$인 제한조건에서 동작하는 초소형 안테나를 구현하였다. 급전구조는 시스템 보드의 좌측 상단에 급전 점을 설정하고, 안정적인 급전을 위해 CPW구조를 사용하였고, 급전부와 안테나의 결합은 자계결합구조를 사용하였다. MZR의 공진주파수는 직렬 커패시터와 셀의 인덕턴스에 의해서 결정됨으로 셀 사이의 갭, 셀의 길이, 인터디지털(interdigital) 커패시터의 길이, 방사부와 접지면의 간격에 대하여 분석하였으며, 그 결과를 사용하여 안테나를 설계 제작하였다. 제작한 안테나는 급전구조를 포함한 안테나의 전체크기는 $20.8{\times}9.0{\times}0.8mm^3$이며, 전기적인 길이는 $0.1664{\lambda}_0{\times}0.072{\lambda}_0{\times}0.0064{\lambda}_0$이다. 측정결과 10 dB 대역폭, 이득과 방향성은 각각 440 MHz(18.3%), 0.4405 dB, 2.722 dB이다. 방사패턴은 전 방향 특성을 가지고 있음을 확인하였으며, 초소형 단말기 안테나에 적용할 수 있음을 확인하였다.

장환형 단일가닥 DNA를 이용한 암세포 성장 억제 유전자 발굴 (Large-Circular Single-stranded Sense and Antisense DNA for Identification of Cancer-Related Genes)

  • 배윤위;문익재;서영배;도경오
    • 한국미생물·생명공학회지
    • /
    • 제38권1호
    • /
    • pp.70-76
    • /
    • 2010
  • The single-stranded large circular (LC)-sense DNA were utilized as probes for DNA chip experiments. The microarray experiment using LC-sense DNA probes found differentially expressed genes in A549 cells as compared to WI38VA13 cells, and microarray data were well-correlated with data acquired from quantitative real-time RT-PCR. A 5K LC-sense DNA microarray was prepared, and the repeated experiments and dye swap test showed consistent expression patterns. Subsequent functional analysis using LC-antisense library of overexpressed genes identified several genes involved in A549 cell growth. These experiments demonstrated proper feature of LC-sense molecules as probe DNA for microarray and the potential utility of the combination of LC-sense microarray and antisense libraries for an effective functional validation of genes.

Expression of HERV-HX2 in Cancer Cells and Human Embryonic Stem Cells

  • Jung, Hyun-Min;Choi, Seoung-Jun;Kim, Se-Hee;Moon, Sung-Hwan;Yoo, Jung-Ki;Chung, Hyung-Min;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • 제32권2호
    • /
    • pp.105-110
    • /
    • 2008
  • The endogenous retrovirus-like elements (HERVs) found on several human chromosomes are somehow involved in gene regulation, especially during the transcription level. HERV-H, located on chromosome Xp22, may regulate gastrin-releasing peptide receptor (GRPR) in connection with diverse diseases. By suppression subtractive hybridization screen on SV40-immortalized lung fibroblast (WI-38 VA-13), we discovered that expression of HERV-HX2, a clustered HERV-H sequence on chromosome X, was upregulated in immortalized lung cells, compared to that of normal cells. Expression of HERV-HX2 was then analyzed in various cell lines, including normal somatic cells, cancer cells, SV40-immortalized cells, and undifferentiated and differentiated human embryonic stem cells. Expression of HERV-HX2 was specifically upregulated in continuously-dividing cells, such as cancer cells and SV40-immortalized cells. Especially, HERV-HX2 in HeLa cells was highly upregulated during the S phase of the cell cycle. Similar results were obtained in hES cells, in which undifferentiated cells expressed more HERV-HX2 mRNA than differentiated hES cells, including neural precursor and endothelial progenitor cells. Taken together, our results suggest that HERV-HX2 is upregulated in cancer cells and undifferentiated hES cells, whereas downregulated as differentiation progress. Therefore, we assume that HERV-HX2 may playa role on proliferation of cancer cells as well as differentiation of hES cells in the transcriptional level.

태반유래 줄기세포와 골수유래 줄기세포에서의 마이크로RNA 발현비교 (Comparison of MicroRNA Expression in Placenta-derived Mesenchymal Stem Cells and Bone Marrow-derived Stem Cells)

  • 김수환
    • 생명과학회지
    • /
    • 제24권11호
    • /
    • pp.1238-1243
    • /
    • 2014
  • 중간엽줄기세포(mesenchymal stem cell, MSC)은 세포치료로 각광받아 널리 사용되고 있다. 이들은 줄기세포의 분화성을 이용하여 많은 만성질환에 연관되어 치료제로 사용되고 있다. 줄기세포는 다른 화학적 치료법에 비해 많은 장점을 가지고 있다. 왜냐하면 줄기세포치료는 자기자신, 혹은 동종의 세포를 이용한 치료이기 때문에 화학 치료에 비해 부작용이나 치료의 위험성이 덜하다. 그리고 마이크로RNA또한 최근 기 존재와 기능이 밝혀져서 연구되고 있는데 특히 항암, 세포생장촉진 등의 기능을 이용해 항암, 만성질환 치료에 접목되어 치료제로의 역할이 기대된다. 마이크로RNA는 대부분의 대사과정이나 항상성조절에 관여되어있다. 따라서 마이크로RNA가 저 발현 혹은 과 발현하게 되면 만성질환으로 이어지게 된다. 하지만 줄기세포와 마이크로RNA의 상호간 보조효과는 잘 연구되어 있지 않다. 따라서 이들 간의 상관관계를 확인하기 위하여 태반유래 줄기세포(PDSC)와 골수줄기세포(BM-MSC), 대조군으로 섬유아세포(Fibroblast, WI-38)을 사용하여 이들이 발현하는 마이크로RNA 발현을 확인해 보았다. 각각의 MSC 세포주에 대하여 특정 마이크로RNA의 발현량을 확인해 보았다. 결과 PDSC의 경우엔 마이크로RNA-34a의 발현이 높았고 BM-MSC의 경우에는 마이크로RNA-27a, 33a, 33b, 211의 발현이 높은 것을 확인할 수 있었다. 따라서 우리는 각각의 MSC세포주와 그들이 발현하는 기능성 마이크로RNA을 연관지어 효과적인 세포치료에 활용될 수 있을 것을 기대한다.

자연산 당귀와 재배 당귀의 피부 손상 회복 효능 비교 (Comparison of skin damage recovery between natural and cultivated Angelicae Gigantis Radix)

  • 황선영;이미현;위관환;김도현;이숭인;정종길
    • 대한본초학회지
    • /
    • 제38권5호
    • /
    • pp.1-7
    • /
    • 2023
  • Purpose : To compare the skin damage recovery efficacy of natural Angelicae Gigantis Radix extract (N-AGR) and cultivated A. Gigantis Radix extract (C-AGR). Through this, we confirmed whether the quality standards of herbal medicines recorded in the classic books make a difference in the experimental efficacy using epithelial cells. Methods : The quality standards of medicinal herbs in the classic books and the cultivation and processing conditions of two types of A. gigas were compared. After inducing oxidative stress with H2O2, cytoprotective property of N-AGR and C-AGR were evaluated through cell viability. Additionally, after wound formation of epithelial JB6 cells, N-AGR and C-AGR were treated to evaluate wound healing efficacy. Result : The natural A, gigas met the excellent quality standards of the classic books. N-AGR inhibited cell death by oxidative stress induced by H2O2, and was superior to C-AGR. Both N-AGR and C-AGR showed dose-dependent wound healing efficacy, but N-AGR was significantly superior to C-AGR. Conclusions : Through the oxidative stress of skin and skin wound healing efficacy experiments using epithelial cells, natural A. gigas showed superior efficacy compared to cultivated A. gigas.

Identification of Genes that are Induced after Cadmium Exposure by Suppression Subtractive Hybridization

  • 이미옥
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 춘계학술대회
    • /
    • pp.107-107
    • /
    • 2003
  • The heavy metal cadmium is a xenobiotic toxicant of environmental and occupational concern and it has been classified as a human carcinogen. Inhalation of cadmium has been implicated in the development of emphysema and pulmonary fibrosis, but, the detailed mechanism by which cadmium induces adverse biological effects is not yet known. Therefore, we undertook the investigation of genes that are induced after cadmium exposure to illustrate the mechanism of cadmium toxicity For this purpose, we employed the polymerase chain reaction-based suppression subtractive hybridization technique. We identified 29 different cadmium-inducible genes in human peripheral mononuclear cells, such as macrophage migration inhibitory factor, lysophosphatidic acid acyltransferase-${\alpha}$, enolase-1${\alpha}$, VEGF, Bax, neuron-derived orphan receptor-1, and Nur77, which are known to be associated with inflammation, cell survival, and apoptosis. Induction of these genes by cadmium treatment was further confirmed by semi-quantitative reverse-transcription polymerase chain reaction. Further, we found that these genes were also induced after cadmium exposure in normal human lung fibroblast cell line, WI-38, suggesting potential use of this induction profile to monitor cadmium toxicity in the lung. Next, Nur77, one of cadmium-inducible genes, was further studied since the products of Nur77 are known to be involved in the apoptotic process of lung cells. Following cadmium treatment, Nur77 gene expression was increased at protein-level in A549 cells. Consistently, the reporter containing Nur77 binding sequence was activated by 2.5-fold after exposure to cadmium in reporter gene analysis by transient transfection experiments. When the plasmid encoding dominant negative Nur77 that represses the transcriptional function of wild-type Nur77 was transfected into A549 cells, the expression of Bax was significantly reduced, suggesting that induction of Nur77 was an important process in cadmium-induced apoptosis in the cells. Cadmium induced the expression of Nur77 in vivo, confirming the relevance of the data obtained in viro. Together our results suggest that Nur77 gene expression in exposure to cadmium leads apoptosis of lung cells which may cause pathological changes in lung.

  • PDF

Cadmium induces apoptosis in human lung fibroblast by inducing oxidative stress: A role of Bax and Bcl-2

  • Oh, Seon-Hee;Lee, Guang-Yong;Lee, Mi-Ock;Moon, Chang-Kiu;Lee, Byung-Hoon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.106.1-106.1
    • /
    • 2003
  • Cadmium (Cd) is an inorganic toxicant of great environmental and occupational concern which was classified as a human carcinogen in 1993. Occupational cadmium exposure is associated with lung cancer in human. In the present study, we established the mechanistic basis of apoptotic cell death induced by Cd in WI38 human lung fibroblast. Cd at 20-80 ${\mu}$M decreased viablility of cells in a concentration-dependent manner. PI staining, TUNEL staining and DNA fragmentation analysis demonstrated the apoptotic cell death by Cd. (omitted)

  • PDF

사람 암세포에서의 $O^6$-methylguanine-DNA methyltransferase의 발현과 알킬화 항암제에 대한 감수성 (Expression of $O^6$-methylguanine-DNA methyltransferase and Sensitivity to Anticancer Alkylating Agents in Human Cancer Cells)

  • 오혜영;정해관;한의식;정성철;허옥순;손수정;김영미;홍성렬;이향우
    • Biomolecules & Therapeutics
    • /
    • 제3권2호
    • /
    • pp.122-131
    • /
    • 1995
  • Five human cancer cell lines (HeLa S3, Hep 3B, KATO III, Hs 683, HeLa MR) and one human normal cell line (WI-38) were examined cell viability, northern blot analysis, western blot analysis, and in situ hybridization for the expression $O_{6}$ -methylguanine-DNAmethyltransferase (MGMT), which can repair $O_{6}$ -methylguanine produced in DNA by alkylating agents. In cell viability test, the lethal sensitivities of each strain against anti-tumor drug N,N-bis(2-chloroethyl)- N-nitrosourea (BCNU) were counted, and both BCNU treated and untreated cell extracts were examined for their MGMT inducibility by RNA dot blot analysis. Cell lines did not show MGMT induction by BCNU pretreatment. Tlle MGMT activity was assayed by measuring the $^3$H radioactivity transferred from the substrate DNA containing [methyl-$^3$H)-O$_{6}$ -methylguanine to acceptor molecules in the cell extracts. Extracts from the majority of tumor strains and normal cells contained substantial MGMT activity of varying degree, while the known Mer$^{[-10]}$ cell (lacked or severely depleted in MGMT activity) Hela MR, and Hs 683 (proved to be Mer$^{[-10]}$ ) were much more sensitive to BCNU than the rest of tumor strains, as measured by cell viability test. Overall results above, KATO III showed the highest expression level of MGMT among the strains examined. Furthermore, with all the tumor and normal strains tested, a good correlation was observed between MGMT expression and cellular resistance to BCNU. The varying levels of expression of MGMT in human cancer cells found in this study should provide a molecular basis for MGMT expression among tumor strains from different tissue origin, the information of antitumor agents selection for chemotherapy of cancers.

  • PDF

Coordinated Cognitive Tethering in Dense Wireless Areas

  • Tabrizi, Haleh;Farhadi, Golnaz;Cioffi, John Matthew;Aldabbagh, Ghadah
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.314-325
    • /
    • 2016
  • This paper examines the resource gain that can be obtained from the creation of clusters of nodes in densely populated areas. A single node within each such cluster is designated as a "hotspot"; all other nodes then communicate with a destination node, such as a base station, through such hotspots. We propose a semi-distributed algorithm, referred to as coordinated cognitive tethering (CCT), which clusters all nodes and coordinates hotspots to tether over locally available white spaces. CCT performs the following these steps: (a) groups nodes based on a modified k-means clustering algorithm; (b) assigns white-space spectrum to each cluster based on a distributed graph-coloring approach to maximize spectrum reuse, and (c) allocates physical-layer resources to individual users based on local channel information. Unlike small cells (for example, femtocells and WiFi), this approach does not require any additions to existing infrastructure. In addition to providing parallel service to more users than conventional direct communication in cellular networks, simulation results show that CCT can increase the average battery life of devices by 30%, on average.

Classification of Biological Effect of 1,763 MHz Radiofrequency Radiation Based on Gene Expression Profiles

  • Im, Chang-Nim;Kim, Eun-Hye;Park, Ae-Kyung;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • 제8권1호
    • /
    • pp.34-40
    • /
    • 2010
  • Radiofrequency (RF) radiation might induce the transcription of a certain set of genes as other physical stresses like ionizing radiation and UV. To observe transcriptional changes upon RF radiation, we exposed WI-38, human lung fibroblast cell to 1763 MHz of mobile phone RF radiation at 60 W/kg of specific absorption rate (SAR) for 24h with or without heat control. There were no significant changes in cell numbers and morphology after exposure to RF radiation. Using quantitative RT-PCR, we checked the expression of three heat shock protein (HSP) (HSPA1A, HSPA6 and HSP105) and seven stress-related genes (TNFRSF11B, FGF2, TGFB2, ITGA2, BRIP1, EXO1, and MCM10) in RF only and RF/HS groups of RF-exposed cells. The expressions of three heat shock proteins and seven stress-related genes were selectively changed only in RF/HS groups. Based on the expression of ten genes, we could classify thermal and non-thermal effect of RF-exposure, which genes can be used as biomarkers for RF radiation exposure.