• 제목/요약/키워드: WGA-HRP

검색결과 14건 처리시간 0.022초

WGA-HRP법을 이용한 두피와 안면부의 신경지배에 관한 연구 (Experimental Study for Innervation of Scalp and Face with WGA-HRP Method)

  • 강준구
    • The Korean Journal of Pain
    • /
    • 제7권2호
    • /
    • pp.238-241
    • /
    • 1994
  • Aim of this study was to discover the projection area of the first cervical spinal nerve. Subcutaneous injection of wheat germ agglutinin-horseradish peroxidase(WGA-HRP) was done at five points of young dogs scalp and face. After two days of survival time, animals were sacrificed by perfusion through the left ventricle of the heart. Trigeminal ganglion, first and second cervical dorsal root ganglion, superior cervical ganglion, middle cervical ganglion and stellate ganglion were removed. Projection area of wheat germ agglutinin-horseradish peroxidase in vestigated into above ganglions. Projection into the first cervical dorsal root ganglion and stellate ganglion was not found. This experiment is deemed valuable for the study of neuronal connection on the central nervous system.

  • PDF

대장(大腸)과 관련(關聯)된 경혈(經穴)들의 신경해부학적(神經解剖學的) 연구(硏究) (Neuroanatomical Studies on the Acupoints Related to the Large Intestine)

  • 강창수;이상룡;이창현;남용재;이광규
    • Journal of Acupuncture Research
    • /
    • 제17권2호
    • /
    • pp.95-117
    • /
    • 2000
  • The purpose of this morphological studies was to investigate the relation between the meridian, acupoints and viscera using neuroanatomical tracers. The common locations of the spinal ganglia, sympathetic chain ganglia, spinal cord and brain projecting to the large intestine meridian were observed following injection of transganglionic tracer, WGA-HRP and transsynaptic neurotropic virus, pseudorabies virus(PRV), Bartha strain(Ba) and PRV-Ba-Gal (Galactosidase)) into the the large intestine(cecum, colon and rectum), ST37 and LI4. After survival times of 96 hours following injection into the thirty rats with WGA-HRP, PRV-Ba and PRV-Ba-Gal. They were perfused, and their spinal ganglia, sympathetic chain ganglia, spinal cord and brain were frozen sectioned($30{\mu}m$). These sections were stained by HRP and X-gal histochemical and PRV immunohistochemical staining method, and observed with a light microscope. The results were as follows : 1. WGA-HRP labeled neurons innervating the large intestine were observed bilaterally within the T13-L4 sympathetic chain ganglia, and T9-11 spinal ganglia. WGA-HRP labeled neurons innervating ST37 were observed within the L3-5 sympathetic chain ganglia, and L2-4 spinal ganglia. WGA-HRP labeled neurons innervating LI4 were observed in the middle cervical ganglion and stellate ganglion, and C5-8 spinal ganglia. 2. In spinal cord, PRV-Ba labeled neurons projecting to the large intestine, ST37 and LI4 were found in thoracic, lumbar and sacral spinal segments. Densely labeled areas of each spinal cord segment were founded in lamina N, V, VII(intermediolateral nucleus), Ⅸ, X and dorsal nucleus. 3. In medulla oblongata, PRV-Ba and PRV-Ba-Gal labeled neurons projecting to the large intestine, ST37 and LI4 were commonly found in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, dorsal motor nucleus of vagus nerve, nucleus tractus solitarius, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus and gigantocellular nucleus. 4. In pons, PRV-Ba and PRV-Ba-Gal labeled neurons were commonly found in locus coeruleus, Kolliker-Fuse nucieus and A5 cell group. 5. In midbrain, PRV-Ba and PRV-Ba-Gal labeled neurons were commonly found in central gray matter. 6. In diencephalon, PRV-Ba and PRV-Ba-Gal labeled neurons were commonly found in paraventricular hypothalamic nucleus. These results suggest that PRV-Ba and PRV-Ba-Gal labeled common areas projecting to the large intestine may be correlated to that of the large intestine meridian, ST37 and LI4. Especially, These morphological results provide that interrelationship of meridian-acupoints -viscera may be related to the central autonomic pathways.

  • PDF

흰쥐에서 WGA-HRP와 pseudorabies virus를 이용한 정관의 신경로에 대한 연구 (Neural pathway innervating ductus Deferens of rats by pseudorabies virus and WGA-HRP)

  • 이창현;정옥봉;고병문;이봉희;김수명;김인식;양홍현
    • 대한수의학회지
    • /
    • 제43권1호
    • /
    • pp.11-24
    • /
    • 2003
  • This experimental studies was to investigate the location of PNS and CNS labeled neurons following injection of 2% WGA-HRP and pseudorabies virus (PRY), Bartha strain, into the ductus deferens of rats. After survival times 4-5 days following injection of 2% WGA-HRP and PRV, the rats were perfused, and their brain, spinal cord, sympathetic ganglia and spinal ganglia were frozen sectioned ($30{\mu}m$). These sections were stained by HRP histochemical and PRY inummohistochemical staining methods, and observed with light microscope. The results were as follows ; 1. The location of sympathetic ganglia projecting to the ductus deferens were observed in pelvic ganglion, inferior mesenteric ganglion and L1-6 lwnbar sympathetic ganglia. 2. The location of spinal ganglia projecting to the ductus deferens were observed in T13-L6 spinal ganglia. 3. The PRY labeled neurons projecting to the ductus deferens were observed in lateral spinal nucleus, lamina I, II and X of cervical segments. In thoracic segments, PRY labeled neurons were observed in dorsomedial part of lamina I, II and III, and dorsolateral part of lamina IV and V. Densely labeled neurons were observed in intermediolateral nucleus. In first lumbar segment, labeled neurons were observed in intermediolateral nucleus and dorsal commisural nucleus. In sixth lumbar segment and sacral segments, dense labeled neurons were observed in sacral parasympathetic nuc., lamina IX and X. 4. In the medulla oblongata, PRV labeled neurons projecting to the ductus deferens were observed in the trigeminal spinal nuc., A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nuc., rostroventrolateral reticular nuc., area postrema, nuc. tractus solitarius, raphe obscurus nuc., raphe pallidus nuc., raphe magnus nuc., parapyramidal nuc., lateral reticular nuc., gigantocellular reticular nuc.. 5. In the pons, PRV labeled neurons projecting to the ductus deferens were ohserved in parabrachial nuc., Kolliker-Fuse nuc., locus cooruleus, subcooruleus nuc. and AS noradrenalin cells. 6. In midbrain, PRV labeled neurons projecting to the ductus deferens were observed in periaqueductal gray substance, substantia nigra and dorsal raphe nuc.. 7. In the diencephalon, PRV labeled neurons projecting to the ductus deferens were observed in paraventricular hypahalamic nuc., lateral hypothalamic nuc., retrochiasmatic nuc. and ventromedial hypothalamic nuc.. 8. In cerebrum, PRV labeled neurons projecting to the ductus deferens were observed in area 1 of parietal cortex. These results suggest that WGA-HRP labeled neurons of the spinal cord projecting to the rat ductus deferens might be the first-order neurons related to the viscero-somatic sensory and sympathetic postganglionic neurons, and PRV labeled neurons of the brain and spinal cord may be the second and third-order neurons response to the movement of smooth muscles in ductus deferens. These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory and motor system monitaing the internal environment. These observations provide evidence for previously unknown projections from ductus deferens to spinal cord and brain which may be play an important neuroanatornical basic evidence in the regulation of ductus deferens function.

Hypothalamic Orexin-A Projections to Midline Thalamic Nuclei in the Rat

  • Lee, Hyun-S.
    • Animal cells and systems
    • /
    • 제9권3호
    • /
    • pp.145-152
    • /
    • 2005
  • A retrograde tracer, WGA-apo-HRP-gold, was injected into midline thalamic nuclei and subsequently orexin-A immunostaining was performed on the tuberal region of the hypothalamus in order to investigate orexinergic projections to the midline thalamus. Injection site was targeted within one specific region, i.e., paraventricular, centromedian, rhomboid, reuniens, or intermediodorsal nucleus, but it proved to be either one or a combination of these thalamic nuclei. The distribution of WG/orexin-double-labeled neurons exhibited a general pattern in that the majority of labeled cells were observed within the ventral portion of the lateral hypothalamus as well as the perifornical nucleus (PeF). A small number of double-labeled cells were also observed at the dorsomedial nucleus, the area dorsal to the PeF, dorsal portion of the lateral hypothalamus, and the posterior hypothalamus. These orexin-immunoreactive neurons might have wake-related influences over a variety of functions related with midline thalamic nuclei, which include autonomic control, associative cortical functions, and limbic regulation.

표지방식을 이용한 흰 쥐 복강 내장을 지배하는 감각신경세포체와 신경섬유의 표지부위 (Localization of Sensory Neurons Innervating the Rat Intestine Using the Cholera Toxin B Subunit(CTB) and Wheat Germ Agglutinin-Horseradish Peroxidase(WGA-HRP))

  • 이동협;이창현;이무삼
    • Journal of Yeungnam Medical Science
    • /
    • 제15권1호
    • /
    • pp.75-96
    • /
    • 1998
  • 복강내장을 지배하는 감각신경세포체 및 신경섬유의 표지부위를 관찰하기 위하여 복강내장을 부위별(위, 십이지장, 공장, 회장, 맹장, 오름결장, 내림결장)로 나누어 2.5% WGA-HRP $30{\mu}l$와 0.5% CTB $20{\mu}l$를 장막과 근육층 사이의 4부위에 나누어 주입하였다. 그 후 48-96시간의 생존시간이 경과한 후 뇌줄기, 척수신경절과 미주신경절에서의 감각신경섬유와 신경세포체의 표지부위를 면역조직화학 염색법과 HRP 조직화학 기법으로 관찰한 결과는 다음과 같다. 1. WGA-HRP에 표지된 감각신경섬유는 위와 맹장에서만 관찰되었으며, CTB에 표지된 감각신경섬유는 복강내장의 모든 장기에서 관찰되었다. 2. 복강내장을 지배하는 감각신경섬유는 뇌줄기내 좌우 고립로핵의 교질부, 교질부의 등쪽내측부, 교차연결부, 내측부, 넷째뇌실벽, 맨아래구역의 앞쪽경계 및 중심관의 등쪽 정중선인 교차연결부에 국소적으로 강하게 표지되었다. 3. 척수신경절에서 위 (stomach)에 분포하는 감각신경세포체는 좌우 관계없이 $T_2$에서 $L_1$까지 여러 신경절에 표지되었으며 이 중 좌우 $T_{8-9}$부위에 가장 많이 표지되었다. 4. 십이지장에서의 척수신경절에 표지된 감각 신경세포체는 좌우 $T_6-L_2$부위에 표지되었으나 다른 장기에 비하여 표지된 감각신경세포체의 수는 적었다. 5. 공장에서의 척수신경절에 표지된 감각신경세포체는 좌우 $T_6-L_2$부위에 표지되었다. 가장 많이 표지된 부위는 좌측 $T_{12}$ 부위였으며, 우측은 $T_{13}$ 부위에 표지되었다. 6. 회장에서의 척수신경절에 표지된 감각신경세포체는 좌우 $T_6-L_2$부위였다. 가장 많이 표지된 부위는 좌측에서 $T_{11}$부위였고, 우측에서 $L_1$부위였다. 7. 맹장에서의 척수신경절에 표지된 감각신경 세포체는 좌측은 $T_7-L_2$부위였으며 우측은 $T_6-L_1$부위였다. 가장 많이 표지된 부위는 좌측은 $T_{11}$이었으며, 우측은 $T_{11-12}$에 표지되었다. 8. 오름결장에서 척수신경절에 표지된 감각신경세포체는 좌측은 $T_7-L_2$부위에 표지되었고 우측은 $T_9-L_4$부위에 표지되어 좌우측 표지부위의 차이를 보였다. 가장 많이 표지된 부위는 좌측은 $T_9$이었으며, 우측은 $T_{11}$에 표지되었다. 9. 내림결장에서 척수신경절에 표지된 감각신경 세포체는 좌측은 $T_9-L_2$부위에 표지되었고 우측은 $T_6-L_2$부위에 표지되었다. 가장 많이 표지된 부위는 좌측은 $T_{13}$이었으며, 우측은 $L_1$에 표지되었다. 10. 복강내장을 지배하는 좌우 미주신경절에 표지된 감각신경세포체는 위에서 가장 많이 표지되었으며 위를 제외한 나머지 장기에서는 표지된 감각신경세포체의 수는 위에 표지된 수보다 적었다. 이상의 결과로 흰쥐의 복강내장을 지배하는 감각신경섬유의 뇌줄기내 표지영역은 좌우 고립로 핵의 교질부, 교질부의 등쪽내측부, 교차연결부, 내측부, 넷째뇌실벽, 맨아래구역의 앞쪽경계 및 중심관의 등쪽 정중선인 교차연결부였으며, 감각신경세포체의 표지영역은 미주신경절과 척수신경절 $T_2-L_4$ 부위였음을 알 수 있었다. 위를 제외한 나머지 장기들에서는 $T_6-L_4$부위에 표지되었으나 소장에서 대장으로 갈수록 가장 많이 표지된 부위는 원위부 가슴신경절에서 근위부 허리신경절쪽으로 이동하는 경향을 보였다.

  • PDF

흰쥐의 신장(腎臟) 신유(腎兪) 경문(京門)을 지배하는 운동(運動)과 감각신경세포체(感覺神經細胞體)에 대한 연구(硏究) (Localization of Motor and Sensory Neurons Innervating Kidney, Shinsu(BL23) and Kyongmun(GB25) in the Rat)

  • 유석현;이창현;이상룡
    • 대한한의학회지
    • /
    • 제18권1호
    • /
    • pp.385-398
    • /
    • 1997
  • The location and local arrangement of motor, sensory neurons within brain stem, nodose ganglia, spinal ganglia and sympathetic ganglia projecting to rat's kidney and meridian point BL 23, GB 25 were investigated by HRP immunohistochemical methods following injection of 5% WGA-HRP into left kidney and meridian point BL 23, GB 25. Following injection of WGA-HRP into left kidney, anterogradely labelled sensory neurons were founded within either nodose ganglia and spinal ganglia. The sensory neurons innervating rat's left kidney were observed within spinal ganglia $T_{7}{\sim}L_3$. Sympathetic motor neurons innervating rat's left kidney were labelled within left suprarenal ganglia, either celiac ganglia, superior mesenteric ganglia, and sympathetic chain ganglia $T_{1}{\sim}L_3$. Sympathetic chain ganglia were concentrated in $T_{12}{\sim}L_1$. The sensory neurons innervating rat's meridian point BL 23 were founded within spinal ganglia $T_{2}{\sim}L_2$. They were numerous in spinal in ganglia $T_{10}{\sim}T_{12}$. Sympathetic motor neurons innervating rat's meridian point BL 23 were observed in suprarenal ganglia and greater splanchnic trunk, sympathetic chain ganglia from $T_1$ to $L_3$. They were concentrated in $T_{12}{\sim}L_3$. The sensory neurons innervating rat's meridian point GB 25 were labelled within spinal ganglia $T_{6}{\sim}T_{13}$. They were numerous in from T10 to $T_{12}$. Sympathetic motor neurons innervating rat's meridian point GB 25 were labelled within greater splanchnic trunk and sympathetic chain ganglia $T_{12}{\sim}L_3$. They were concentrated in $T_{13}{\sim}L_1$. This results neuroanatomically imply that the location of rat's motor and sensory neurons innervating meridian point BL 23 and GB 25 were closely related that of innervating kidney.

  • PDF

Central Projections of Sensory Information Produced by Topical Application of Capsaicin to the Tongue in the Cat

  • Hong, Seung-Kil;Nahm, Sook-Hyun;Han, Hee-Chul;Suh, Young-Suk;Won, Ran;Lee, Bae-Hwan
    • The Korean Journal of Physiology
    • /
    • 제25권1호
    • /
    • pp.87-99
    • /
    • 1991
  • In order to elucidate whether capsaicin applied topically acts as a pain-producing subastance or as a tastant, neuronal activities of the chorda tympani nerve(CN), lingual nerve(LN), solitary tract nucleus(STN), and trigeminal nucleus(TGN) were recorded while thermal and taste stimuli, and capsaicin were being applied topically, and algesics intra-arterially to the tongue of cats anesthetized with ${\alpha}-chloralsoe$. In addition, the STN neurons were examined after wheat germ agglutinin-horseradish peroxidase(WGA-HRP) was applied to the CN. The CN fibers responded to taste and thermal stimuli, algesics, and capsaicin. Responses to capsaicin were significantly correlated with those to taste and thermal stimuli. The LN fibers mainly responded to mechanical and thermal stimuli, algesics, and capsaicin. Responses to capsaicin were significantly correlated with those to algesics. The STN neurons responded to taste and thermal stiumli, algesics, and capsaicin. Responses to capsaicin were significantly correlated with those to taste and thermal stiumli in somewhat different fashion from those of the CN fibers. The TGN neurons mainly responded to mechanical stimuli, algesics, and capsaicin. Correlations between responses to capsaicin and any others were not significant. After WGA-HRP was applied to the CN, the STN neurons which receive input from the CN were identified largely in the medio-ventral portion to the solitary tract. These results suggest that capsaicin produce taste as well as pain sensation. Sensory information evoked by capsaicin can be conveyed to the STN, especially medio-ventral portion, via the CN as gustatory information on the one hand, and to the STN or TGN via the LN as noxious information on the other. In addiation, the noxious information may be conveyed to the STN via the CN.

  • PDF

쥐의 외측 망상핵으로부터 소뇌충부 제6엽 내의 각 소엽으로 신경 경로에 관한 연구 (The Projection from the Lateral Reticular Nucleus to the Cerebellar Vermal Lobule VI in the Rat: A Retrograde Labelling Study Using Horseradish Peroxidase)

  • 이현숙
    • 한국동물학회지
    • /
    • 제39권1호
    • /
    • pp.26-35
    • /
    • 1996
  • 쥐의 외측 망상핵으로부터 소뇌충부 제6엽 내의 각 소엽으로 신경 경로를 WGA-HRP를 이용한 역행수송법을 써서 조사하였다. 표지된 신경세포는 양측의 외측 망상핵에 모두 존재하였으나, 동축의 경우에 편중되어 있었다. 동측 또는 대측의 외측 망상핵의 큰 세포구획(magnocellular division)에서 국소순적으로 배열이 관찰되었는데, a소엽에서 c소엽으로의 투사가 동측의 큰 세포구획에서 등쪽에서 배쪽으로 분포양상을 보였으며, 대측의 큰세포구획에서는 다소 머리측에서 꼬리측 절편으로의 분포 양상을 보였다. 그 외 동측 또는 대측의 작은세포구획(parvocellular division) 및 삼차밑구획(subtrigeminal division)에서의 표지된 신경세포의 수는 극히 적었다. 한편 외측 망상핵으로부터 소뇌층부의 제6엽 a소엽/b소엽으로서의 투사에 관한 컴퓨터를 이용한 삼차원 재구성은 각 경우에 있어서 상당량의 투사의 중첩이 존재함을 보여주고 있다.

  • PDF

신경추적자(神經追跡子)를 이용한 얼굴신경마비(神經痲痺)와 관련(關聯)된 혈(穴)들을 지배(支配)하는 신경세포체(神經細胞體)의 표식부위(標識部位)에 대(對)한 형태학적(形態學的) 연구(硏究) (Morphological Studies on the Localization of Neurons Projecting to the Meridian Points Related to the Facial Nerve Paralysis in the Rat Using the Neural Tracers)

  • 김점영;이상룡;이창현
    • 대한한의학회지
    • /
    • 제18권1호
    • /
    • pp.58-71
    • /
    • 1997
  • In order to the location and local arrangement of nerve cell bodies and nerve fibers projecting to the meridian points related to facial nerve paralysis in the rat using the neural tracers, CTB and WGA-HRP, labeled neurons the were investigated by immunohistochemical and HRP histochemical methods following injection of 2.5% WGA-HRP and 1% CTB into Hyopko$(S_6)$. Chichang$(S_4)$, Sugu$(GV_{26})$, Sajukkong$(TE_{23})$ and Yangbaek$(G_{14})$. Following injection of Hyopko$(S_6)$, Chichang$(S_4)$, labeled motor neurons were founded in facial nucleus, trigeminal motor nucleus, reticular nucleus and hypoglossal nucleus. labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in mesencephalic trigeminal tract, sensory root of trigeminal nerve, oral, interpolar and caudal part of trigeminal nucleus, area postrema, nucleus tractus solitarius, lateral reticular nucleus and $C_{1-2}$ spinal ganglia. Following injection of Sugu$(GV_{26})$, labeled motor neurons were founded in facial nucleus. Labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. Sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in spinal trigeminal tract, trigeminal motor nucleus, mesencephalic trigeminal tract, oral. interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius, lateral reticular nucleus, dorsal part of reticular part and $C_{1-2}$ spinal ganglia. Following injection of Sajukkong$(TE_{23})$ and Yangbaek$(G_{14})$, labeled motor neurons were founded in facial nucleus, trigeminal motor nucleus. Labeled sensory neurons were founded in trigeminal ganglia and $C_{1-2}$ spinal ganglia. sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in oral, interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius, inferior olovary nucleus, medullary reticular field and lamina I-IV of $C_{1-2}$ spinal cord. Location of nerve cell body and nerve fibers projecting to the meridian points related to the facial nerve paralysis in the rats were found in facial nucleus and trigeminal motor nucleus. Sensory neurone were found in trigeminal ganglia and $C_{1-2}$ spinal ganglia. Sympathetic motor neurons were found in superior cervical ganglia. Sensory fibers labeled in brainstem were found in mesencephalic trigeminal tract, oral, interpolar and caudal parts of trigeminal nucleus, area postrema, nucleus tractus solitarius. lateral reticular nucleus, medullary reticular field.

  • PDF

흰쥐의 두힘살근 운동신경세포의 발달과정에 관한 형태학적 분석 (MORPHOLOGICAL ANALYSIS OF DEVELOPMENTAL CHANGES IN SOMA AREA OF DIGASTRIC MOTONEURONS IN THE RAT TRIGEMINAL MOTOR NUCLEI)

  • 김재현;박미화;백상규;마수경;백상흠;차두원
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제31권2호
    • /
    • pp.137-142
    • /
    • 2005
  • To analyze the developmental changes in soma diameters of digastric motoneurons, wheat-germ agglutinin conjugated horseradish peroxidase (WGA-HRP) was injected into the digastric muscle and visualized the retrogradely HRP-labeled motoneurons through tungstate/tetramethylbenzidine (TMB) and following diaminobenzidine (DAB) reactions. The results obtained from Sprague-Dawley rats at postnatal days 1 (P1), 10 (P10) and 30 (P30) indicated as follows: firstly, soma diameters of digastric motoneurons showed unimodal distribution in all postnatal days examined; secondly, the period of P1 to P10 (period 1) showed about 2 times faster growth rate than that of P10 to P30 (period 2); thirdly, the smallest soma examined in each postnatal day exhibited slower growth rate with that of the largest one (increase ratio in soma diameters from P1 to P30, smallest vs. largest = 1.62 : 1.93); Finally, relative growth rates a day showed again that period 1 had faster growth rate than that of period 2. Consequently, developmental changes in soma diameters of digastric motoneurons resulted in very different growth rates between both periods. This implies that the growth of the soma is almost completing within P10 and thereafter growing slowly. The period 1 and 2 are corresponding to sucking and sucking/masticatory period, respectively. Therefore present study providing morphological changes in soma diameters of digastric motoneurons suggests that both periods and their different growth rates of the motoneurons in each period may closely be related with each other.