• Title/Summary/Keyword: WD-XRF

Search Result 13, Processing Time 0.026 seconds

Color Evolution in Single Crystal Colored Cubic Zirconias With Annealing Atmosphere and Temperature

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.450-455
    • /
    • 2016
  • Color change in single-crystal, yellow, red, purple, and colorless cubic zirconias (CZs) was investigated as a function of annealing in vacuum and air atmosphere at $800-1400^{\circ}C$ for 30 min, for development of a damascene process of plugging a precious metal paste at the elevated temperature. Coloring-element contents of the CZs were evaluated using WD-XRF, and the color change determined visually by naked eye, and using a digital camera and UV-Vis-NIR color analyzer. WD-XRF showed that all of the CZs had cubic-phase stabilizer elements and coloring elements. All CZs that underwent vacuum annealing exhibited a slight color change at $<900^{\circ}C$, while their colors began to change to black at $1100^{\circ}C$, and became opaque black at $1400^{\circ}C$. After air annealing, there was almost no color change up to $1400^{\circ}C$. Since red and purple CZs showed greater color difference (CD) values than the others, the degree of CD is likely to depend on the original color of the CZ due to the different stabilities of their coloring elements during annealing. Based on our results, it is suggested that annealing in air at $<900^{\circ}C$ is advantageous, and assorted colored CZs can be used for precious metal damascene.

Color Enhancement of Natural Sapphires by High Pressure High Temperature Process

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.165-170
    • /
    • 2015
  • We employed the high-pressure high temperature (HPHT) process to enhance the colors of natural sapphires to obtain a vivid blue. First, we analyze the content of the coloring agent $Fe_2O_3$ using the wavelength dispersive X-ray fluorescence (WD-XRF) method. The HPHT procedure operates under 1 GPa at various temperatures of 1700, 1750, and $1800^{\circ}C$ for 5 minutes using a cubic press. We determine the color changes using the optical microscopic images, UV-VIS near-infrared (NIR) spectra, micro-Raman spectra, and Fourier transform-infrared (FT-IR) spectra for all sapphire samples before and after the treatment. The optical microscopic results indicate that the HPHT process can enhance the sapphire color to a vivid blue at temperatures above $1750^{\circ}C$. The UV-VIS-NIR spectra identify the color changes explicitly and quantitatively through providing the Lab color scales and color differences. Both results demonstrate that the colors of natural sapphires can be enhanced to a vivid blue using the HPHT process above $1750^{\circ}C$ under 1 GPa for 5 minutes.

Characteristics of Airborne and Deposited Dust in Expressway Toll Booths (고속도로 톨게이트 부스의 공기 중 분진 및 침착 분진 특성)

  • Nam, Mi Ran;Jung, Jong-Hyoen;Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2020
  • Objectives: This study was performed to evaluate the total dust, size-selective dust, and heavy metal concentrations generated inside and outside toll booths on an expressway and to identify the source through analysis of the components of the deposited dust. Methods: A total of 32 samples were collected from eight expressway toll booths. Each total dust sample was collected using a 37 mm PVC filter attached to a personal air sampler. Heavy metal samples were collected according to NIOSH method 7300. The size-selective dust concentrations were identified using a DustMate, and deposited dust was analyzed by WD-XRF and UHR-FE-SEM. Results: The geometric mean concentrations of the total dust inside and outside the toll booths were 337.5 ㎍/㎥ and 342.7 ㎍/㎥, respectively. The overall concentrations of TSP, PM10, PM2.5, and PM1 were higher on the outside of the toll booths, as the particle size of dust was larger, and higher in the underground passage as the dust size was smaller. The real-time analysis of the dust concentrations of TSP, PM10, PM2.5, and PM1 revealed to be higher at morning and evening times than other times because of heavy traffic. The element components of deposited dust in the toll booth were related to natural sources rather than artificial sources. Among the chemical components in the deposited dust analyzed by WD-XRF, SiO2 was the highest. For the elements analyzed by UHR-FE-SEM, C was the highest, followed by O, and Si. Conclusions: In order to reduce the dust concentrations around toll booths on an expressway, it is necessary to periodically clean surrounding areas such as underground passages, and it is also necessary to remove deposited dust inside the toll booth from time to time.

A Study on Practicality of Condition Monitoring Method of Accelerated Thermal Aging CSPE (가속열화 된 CSPE 상태감시법 유효성 평가)

  • Lee, Jung-Hoon;Goo, Cheol-Soo;Kim, In-Yong;Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2088-2092
    • /
    • 2011
  • The accelerated thermal aging of CSPE(chloro sulfonate polyethylene) of test cables were carried out for the period equal to 10, 20 and 30 years in air at $100^{\circ}C$, respectively. The CSPE cables(TAIHAN electric wire Co. Ltd) which installed in nuclear power plant for three years were used as starting materials. Condition monitering methods of the accelerated thermal aging of CSPE cables were estimated through indenter modulus and OIT(oxidation induction time) of IEC 62582, and those were newly estimated through volume electrical resistivity, ultrasound reflection time, density, FE-SEM(field emission scanning electron microscopy), XPS(x-ray photoelectron spectroscopy), EDS(energy dispersive spectroscopy), and WD-XRF(wavelength dispersive x-ray fluorescence). A new condition monitoring methods of the accelerated thermal aging of CSPE cables were generally coincident with trend of indenter modulus expect EDS, XPS and XRF. A volume electrical resistivity among new condition monitoring methods of the accelerated thermal aging of CSPE cables is excellent. It is considered that life-time of CSPE cable can be predicted through volume electrical resistivity, if CSPE jacket was aged for period such as more than 20 years.

Comparison of flux and natural sapphire after heat-treatment (열처리 후 플럭스 사파이어와 천연 사파이어의 비교 분석)

  • Kim, Ki-In;Ahn, Yong-Kil;Seo, Jin-Gyo;Park, Jong-Wan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.152-158
    • /
    • 2009
  • Various fabrication methods have been used to synthesize sapphire which has qualities of jewelry well beyond the industrial class. Among them, the flux sapphire of Chatham Company which has as high value as jewelry was selected in order to compare natural and synthetic sapphire. First, the WD-XRF (Wavelength dispersive x-ray fluorescence spectrometer) was used to analyze the chemical composition of natural and synthetic sapphire. Although natural sapphire had very diverse chemical compositions, flux sapphire had small quantities of Mo, Pt and Pb elements in addition to the similar chemical ingredients to natural one. Pt is decisive proof of flux sapphire. Next, by investigating spectroscopic characteristics using UV-VIS Spectrophotometer after heat treatment at high temperatures of $1300^{\circ}C$ and $1500^{\circ}C$, the variation of 690 nm absorbance related to $Cr^{3+}$ was detected in the natural sapphire while those of the 690 nm absorbance (related to $Cr^{3+}$) as well as absorbance of 376 nm and 388 nm ($Fe^{3+}$) were seen in the flux sapphire. It was found that the difference in the absorbance variation of flux sapphire is greater than that of natural sapphire after heat treatment. The chemical composition and spectrum analysis were utilized to compare the natural sapphire and the flux synthetic sapphire.

Color change of Zambian amethyst by heat treatment (잠비아산 천연 자수정의 열처리에 따른 색상변화)

  • Jun, Mi-Lee;Seo, Jin-Gyo;Kim, Young-Chool;Park, Jong-Wan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • It is known that the natural amethyst is changed to citrine after heat treatment. However, when all amethyst samples from Zambia were heat-treated in the temperature range of $350{\sim}380^{\circ}C$ for 1 hour, the result was that five out of eight samples were changed to citrine and all the rest of samples became rock crystal quartz. These differences in the color appearance seem to be influenced by the original colors contained in the amethyst before the heat treatment. The amethyst containing yellow color changed to citrine and the amethyst without containing yellow color changed to rock crystal quartz after the heat treatment. The results compared after the instrumental analysis on the difference of color change, it showed the differences of peak intensity in 3,400 $cm^{-1}$ and the existence and non-existence of peak at the range of 5,200${\sim}$5,400 $cm^{-1}$ in FTIR. It revealed the difference in the quantity of Cr which is a trace element in the WD-XRF analysis. The identical result in the FTIR spectra before and after the heat treatment reveals that the heat treatment did not cause any change in the main composing elements or crystal structure.

Material Characteristic of Slags and Iron Bloom Produced by Smelting Process Using Sand Iron (사철 제련을 통해 생산된 슬래그와 괴련철의 재료과학적 특성 비교)

  • Cho, Sung Mo;Cho, Hyun Kyung;Kwon, In Cheol;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.34 no.1
    • /
    • pp.39-50
    • /
    • 2018
  • This study replicated traditional smelting methods to produce iron blooms from sand iron. The metallurgical properties of the slag and the iron blooms were analyzed. The sand iron materials used in the smelting experiments, which were based on ancient documents, were collected from Gyeong-Ju and Pohang. Analysis by WD-XRF and XRD showed that Gyeong-Ju's sand iron contains a high-titanium, with magnetite, and Pohang's sand iron contains a low-titanium, which magnetite and ilmenite were mixed. Analysis of the slag with XRD, and the micro-structure with metal microscopes and SEM-EDS, confirmed that the major compounds in the slag of the Gyeong-Ju's sand iron were fayalite and $w\ddot{u}stite$, and those in the slag of the Pohang's sand iron were titanomagnetite and fayalite. The differences in the main constituents were confirmed according to the Ti quantity. Finally, we observed the microstructures of the iron blooms. In the case of the iron bloom produced from Gyeong-Ju's sand iron, the outside was found to be dominantly a pearlite of eutectoid steel, while the inside was a hypo-eutectoid steel where ferrite and pearlite were mixed together. While, the major component of the iron bloom produced from Pohang's sand iron was ferrite, which is almost like pure iron. However, there were many impurities inside the iron blooms. Therefore, this experiment confirmed that making ironware required a process that involved removing internal impurities, refining, and welding. It will be an important data to identify the characteristics of iron by-products and the site through traditional iron-making experiments under various conditions.

Intercomparison and Determination of Sediment by Instrumental Neutron Activation Analysis (중성자방사화분석을 이용한 퇴적물의 정량 및 비교연구)

  • 정용삼;문종화;정영주;박용준;이길용;윤윤열;이수형;김경태
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.116-121
    • /
    • 1998
  • For the application of study on pollution and conservation of environment determination of 33 elemental concetrations in different sediment samples were carried out using instrumental neutron activation analysis (INAA). For verification and evaluation of the analytical method, three standard reference materials (two NIST SRMs and one NRCC CRM) were chosen and the accuracy and precision of the analysis were estimated by comparison to the certified values. Under the optimum condition, the analytical procedure to apply a practical sample was estimated. Neutron irradiation of sample was done at the irradiation facilities (neutron flux, 1-3${\times}$10$\^$13/n/$\textrm{cm}^2$$.$s) of the TRIGA MARK-III and HANARO research reactor in the Korea Atomic Energy Research Institute. In addition, analysis of two IAEA's sediment was performed according to the pre-established analytical method. The analytical results of elements such as Al, As, Co, Cr, Fe, Sb and Zn by INAA were intercompared with those of WD-XRF, ICP-MS and AAS, and are relatively agreed with each other.

  • PDF

전자빔 조사를 통한 핑크 투어멀린의 특성 변화

  • Sin, So-Ra;Seo, Jin-Gyo;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.148.1-148.1
    • /
    • 2013
  • 투어멀린는 $XY_3Z_6(Si_6O_{18})(BO_3)_3$ 화학 방정식을 가진 광물로써 조성에 따라 alkali 투어멀린, calcic 투어멀린, X-site vacant 투어멀린 등으로 불린다. 투어멀린 특성과 화학성분에 따라 종을 구분하는데, 주된 종들은 엘바이트, 리디코타이트, 드라바이트, 우바이트, 숄이 있다. 일반적으로 적색 투어멀린의 발색 원인은 Mn, Fe 그리고 Cu의 함량에 따라 색상의 차이를 나타낸다. 본 연구에서 우리는 10MeV 에너지와 $1{\times}10^{17}cm^2$ 조건에서 전자빔을 수행 한 후 투어멀린의 컬러 변화를 관찰하였다. 자외선-가시광선 분광분석결과 모든 시료는 전자빔 조사 후 530 nm의 $Mn^{3+}$부근의 흡수 peak들이 증가하는 것이 관찰되었다. 이는 $Mn^{2+}$에서 $Mn^{3+}$ 이동 때문이여, $Mn^{3+}$는 Y-site에서 O(1)H-O(3)H 축에 따라 Jann-taller 변형으로 안정된 구조를 가지게 된다. 따라서 전자빔 조사 후 적색으로 변하게 되는 것이다. 또한 전자빔 조사 후 컬러가 모두 변했지만 상온에 뒀을 때 변화 된 컬러가 원래의 색으로 되돌아가는 향상을 보였다. 이는 전자빔 조사 후 전자가 튕겨져 나가서 불안정한 상태로 존재하고 있다가 상온의 열에 의한 에너지에 통해 다시 안정된 상태로 되돌아오는 결과로 볼 수 있다. 또한 우리는 WD-XRF를 통해 미량의 Mn 원소함량 차이에 따라 전자빔 조사 시 컬러 변화에 미치는 영향에 대해 확인할 수 있었다. 그리고 적외선 분광분석에서는 4,300-4,600 $cm^{-1}$사이에 특징적인 밴드들이 관찰되었다.

  • PDF

전자 빔 조사에 따른 토파즈의 컬러 센터에 미치는 영향

  • Sin, So-Ra;Seo, Jin-Gyo;An, Yong-Gil;Yun, Don-Gyu;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.237-237
    • /
    • 2012
  • 토파즈는 Al2SiO4 ((F,OH)2) 화학성분을 이루고 있는 광물로써 주로 Fe, Cr, V 등과 같은 불순물을 포함하고 있다. 토파즈는 colorless, blue, pink, yellow 등 다양한 컬러로 산출된다. 결정 내 Si4+ 가 있어야 할 자리에 Al3+ 가 치환되면 Al3+ 를 둘러싸고 있는 4개의 산소 중 하나의 최외각 전자가 전자가를 맞추기 위해 주변에 있던 수소와 결합하여 hole center를 형성한다. 이때 토파즈는 옅은 황색의 컬러를 발색하게 된다. 그 외 청색과 핑크색 등의 컬러는 Al3+ 자리에 치환된 Fe, Cr 등과 같은 불순물에 의해 발색을 일으킨다. 또한 토파즈는 인위적으로 감마선, 전자 빔, 양성자 빔, 중성자 빔을 통해서도 hole center를 형성시켜 컬러를 발색시킬 수 있다고 잘 알려져 있다. 본 연구에서는 총 8개의 무색 토파즈를 이용하여 다양한 조건(energy 및 dose)의 전자 빔 조사를 통해 각 조건 별 컬러변화 및 분광학적 특성변화를 관찰하였다. 모든 시료는 WD-XRF를 통해 정성분석을 하였고, 전자스핀공명(ESR)기기를 통해 전자 빔 조사 전과 후 전자의 스핀 특성 변화를 관찰하였다. 자외선-가시광선 분광분석결과 모든 시료는 전자빔 조사 후 황색과 관련이 있는 450 nm 부근의 파장 영역에서 흡수 peak가 증가하는 것을 확인할 수 있었다. 또한 전자 빔 조사 후 전자스핀공명 분석 결과에서도 Fe3+ 와 관련이 있는 g=3.5~4 영역은 감소하는 반면에 hole center와 관련이 있는 g=2.012 영역이 증가하는 향상을 보였다. 본 연구결과를 통해 우리는 전자 빔 조사 조건에 따라 토파즈의 결정 내부에 미치는 영향 및 컬러 변화와의 상관관계에 대해 확인할 수 있었다.

  • PDF