• Title/Summary/Keyword: WCA

Search Result 48, Processing Time 0.021 seconds

Enzymatic Treatment of Polyamide Fiber by Alcalase (알칼라제를 이용한 폴리아미드 섬유의 효소가공)

  • Song, Yu-Sun;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.8
    • /
    • pp.1006-1013
    • /
    • 2011
  • An enzymatic treatment method using alcalase was introduced to improve the moisture characteristic of the polyamide fiber. The alcalase treatment conditions such as the pH, treatment temperature, enzyme concentration, and treatment time were optimized by measuring the amino groups. The changes in the weight loss, tensile strength, moisture regain, water contact angle (WCA), and water absorption rate of the polyamide fiber with the changes in the alcalase treatment conditions were evaluated. The optimum alcalase treatment conditions for polyamide fiber were found to be a treatment temperature of 50oC, a treatment time of 50 minutes, an alcalase concentration of 10% (owf), and a pH of 7.0. The ethylenediaminetetraacetic acid (EDTA) and L-cysteine accelerated the activity of the enzyme; however, they did not have an effect on the amino group production of the fiber surface. The alcalase treatment of the polyamide fiber improved the fiber's moisture regain, WCA, and absorption rate due to the amino group on the fiber surface. The results showed that the alcalase treatment of polyamide fiber is an effective method to improve the moisture characteristic of the polyamide fiber.

The Study on the Implementation and Design of Power Supply Unit of Digital of Dehop/Rehop Transponder of EQM (우주 인증용 대전자전중계기의 전원공급기 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.437-442
    • /
    • 2021
  • This study describes the design and implementation of power supply of dehop/rehop transponder of EQM(Engineering Qualification Model). We materialized the interface of the PLDIU and power supply of a satellite bus, and minimized the potential for the occurrence of such erroneous operation circuit ESD through the WCA of the space environment. We designed a reliable power supply through simulation for TID about space radiation and simulation of the vibration generated during it launched, and we confirmed that it satisfies the environmental test specification through the test space environment after production.

Semi-Permanent Hydrophilization of Polyester Textile by Polymerization and Oxidation Using Atmospheric Pressure Dielectric Barrier Discharge (APDBD)

  • Se Hoon Shin;Yoon Kee Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.115-123
    • /
    • 2023
  • In this paper, we report and discuss the semi-permanently hydrophilic (SPH) treatment of polyester fabric using plasma polymerization and oxidation based on atmospheric pressure dielectric barrier discharge (APDBD) technology. SiOxCy(-H) was coated on polyester fabric using Hexamethylcyclotrisiloxane (HMCTSO) as a precursor, and then plasma oxidation was performed to change the upper layer of the thin film to SiO2-like. The degradation of hydrophilicity of the SPH polyester fabrics was evaluated by water contact angle (WCA) and wicking time after repeated washing. The surface morphology of the coated yarns was observed with scanning electron microscopy, and the presence of the coating layer was confirmed by measuring the Si peak using energy dispersive x-ray spectroscopy. The WCA of the SPH polyester fabric increased to 50 degrees after 30 washes, but it was still hydrophilic compared to the untreated fabric. The decrease in hydrophilicity of the SPH fabric was due to peeling of the SiOxCy(-H) thin film coated on polyester yarns.

DC/DC Switching Converter Characteristics (DC/DC 스위칭 컨버터 특성)

  • 최영진;김상준;김태경
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.743-746
    • /
    • 1999
  • In this paper, Flyback type DC/DC Switching Converter was designed, analyzed and fabricated. Worst Case Analysis(WCA) was peformed with Mathcad program and presents circuit simulation results for the in-rush current limit circuit. The value of the maximum OFF voltage stress is 131.84V, it is less than device specification(200V). The switching frequency(nominal case) and duty cycle at the wont case analysis are 75KHz and 34.62%, respectively. The maximum in-rush current presents 0.5A Those results show a possibility for use in space

  • PDF

Photocatalyst Surface Properties of the Oxide Thin Films According to the Plasma Etching Process (플라즈마 에칭공정에 따른 산화물 박막의 광촉매 표면 특성)

  • Lee, Chang-Hyun;Seo, Sung-Bo;Oh, Ji-Yong;Jin, Ik-Hyeon;Sohn, Sun-Young;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.300-305
    • /
    • 2015
  • $WO_3$, $SiO_2$, and $TiO_2$ films with hydrophilic property are deposited by rf-magnetron sputtering. Their wettability is strongly depends on the presence or absence of the oxygen plasma etching on the glass substrates. The $TiO_2$ film of 50 nm-thick on the plasma etched glass shows a water contact angle (WCA) below $5^{\circ}$ which means a super-hydrophilic surface. However, WCA values are gradually degraded when the films are exposed under atmosphere, especially $WO_3$. In order to improve hydrophilic property, the degraded films can be again recovered by UV illumination for 10 sec using UV-light and the $TiO_2$ film shows a super-hydrophilic surface about $3^{\circ}$.

Enhanced performance of thin-film nanocomposite RO/NWF membrane by adding ZnO nanospheres in aqueous phase during interfacial polymerization process

  • Li, Hongbin;Shi, Wenying;Su, Yuheng;Hou, Hongxiang;Du, Qiyun;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.225-244
    • /
    • 2017
  • A novel thin-film nanocomposite (TFN) reverse osmosis (RO)/non-woven fabric (NWF) membrane was prepared by adding zinc oxide (ZnO) nanospheres ($30{\pm}10nm$) during the interfacial polymerization process of m-phenylenediamine (MPD) and trimesoyl chloride (TMC) on self-made polysulfone (PSF) membrane/polyester (PET) non-woven fabric support. The improved performance of TFN RO membrane was verified in terms of water contact angle (WCA), water flux, salt rejection, antifouling properties and chlorine resistance. The results showed that the WCA value of TFN RO surface had a continuous decrease with the increasing of ZnO content in MPD aqueous solution. The water flux of composite TFN RO membranes acquired a remarkable increase with a stable high solute rejection (94.5 %) in $1g{\cdot}L^{-1}$ NaCl aqueous solution under the optimized addition amount of ZnO (1 wt%). The continuous testing of membrane separation performance after the immersion in sodium hypochlorite solution indicated that the introduction of ZnO nanospheres also dramatically enhanced the antifouling properties and the chlorine resistance of composite RO membranes.

Dyeing Properties and Scouring of Wool/Polyester Blend Fabrics Using Papain from Carica Papaya (파파인 가공한 양모/폴리에스터 혼방직물의 정련 및 염색성)

  • Song, Hyun-Joo;Kim, Hye-Rim;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.2
    • /
    • pp.213-221
    • /
    • 2009
  • This study provides the optimum papain treatment method and its effect on wool/polyester blend fabrics. The enzymatic treatment condition is optimized depending on its pH level, temperature, concentration of enzyme, treatment time and concentration of activators. The characteristics of samples treated with the papain are measured using weight loss, tensile strength, whiteness, WCA, dyeing property and surface micrographs. The results are described as follows: According to measuring weight loss, tensile strength and whiteness, a pH level of 7.5, $70^{\circ}C$, 10% papain(o.w.f.) and 60minutes of treatment time are optimized for papain treatment. L-cysteine and sodium sulfite are able to activate the papain. The optimum concentrations of them are 10mM and 50mM respectively. The WCA of fabrics is decreased since papain treatment makes wool/polyester blend fabrics more hydrophilic. Scouring with papain treatment improves whiteness and dyeing property of fabrics. The dyeing property of papain-treated fabrics is enhanced simply by a single step dyeing process using a basic dye. The surface of wool treated with papain in the presence of L-cysteine shows to be descaled. The surface of wool fibers in the presence of sodium sulfite, however, shows it is hydrolyzed evenly instead of being descaled. The surface of papain treated polyester fibers shows cracks and voids.

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin;Shi, Wenying;Zhang, Yufeng;Zhou, Rong
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.205-224
    • /
    • 2015
  • A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.

Fabrication of Super-hydrophobic Surface using Solubility Difference of Polystyrene at Two Different Solvents (두 용매에서의 폴리스타이렌의 용해도 차이를 이용한 초소수성 표면 제조)

  • Jung, Jin-Suk;Park, Kwang-Bae;Choi, Ho-Suk
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.35-39
    • /
    • 2008
  • In this study, we successfully fabricated a super-hydrophobic polymer layer on the surface of slide glass using the solubility difference of a polymer at two different solvents. After dissolving polystyrene (PS) resins in tetrahydrofuran (THF) as a good solvent and then adding ethanol(EtOH) as a poor solvent, we were able to fabricate super-hydrophobic surface. We also investigated the effect of EtOH addition, coating methods, solution mixing time and speed, and other alcohols on the surface hydrophobicity. The water contact angle (WCA) of the fabricated surface revealed $WCA>150^{\circ}$ and the microporous surface structure composed of microparticles with the size less than $5\;{\mu}m$.

  • PDF

Effects of Mixed Activators on Enzymatic Activation for Wool.polyester Blend Fabrics (양모.폴리에스터 혼방직물의 효소가공 시 활성제 복합사용의 효과)

  • Song, Hyun-Joo;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.9
    • /
    • pp.1461-1466
    • /
    • 2008
  • This study provides effects of mixed activators on enzymatic activation and determines optimum mixture ratio for enzymatic treatment. Wool 80% and polyester 20% blend fabric and papain from carica papaya are used in this experiment. L-cysteine and sodium sulfite are used as activators for papain treatment process. The treatment condition is pH 7.5, $70^{\circ}$, papain concentration 10%(o.w.f), 60 minutes. L-cysteine and sodium sulfite are added in enzyme solution with various concentrations($0{\sim}50mM$). The optimum treatment condition is determined by measuring weight loss, tensile strength, whiteness, water contact angle(WCA), dyeability and surface micrographs. The results are as follow; The optimum mixture ratio of activators is L-cysteine 2mM and sodium sulfite 10mM. Mixed activators assists in improving the activation of papain. WCA of papain treated fabrics is decreased since papain treatment with activator mixture makes wool polyester blend fabrics more hydrophilic. Dyeing property of papain-treated fabrics more improves by the treatment with mixed activators than with single activator. It means that this method can save time and lower cost. After papain treatment in the presence of mixed activator, the surface of fabrics is modified. The surface of wool fiber shows to be descaled and hydrolyzed, and that of polyester fiber shows to be cracked.