• 제목/요약/키워드: WC-Co alloy

검색결과 53건 처리시간 0.023초

Comparison of HVOF Thermal Spray Coatings of T800 and WC-Co Powders

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Baek, N.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • 한국표면공학회지
    • /
    • 제39권6호
    • /
    • pp.295-301
    • /
    • 2006
  • Hard chrome plating has been used in surface hard coating over 50 years both for applying hard coating and re-building of worn components. Hard chrome plating solution and mist pollute environment with very toxic $Cr^{6+}$(hex-Cr) known as carcinogen which causes lung cancer, High velocity oxy-fuel (HVOF) thermal spray coatings of WC base cermet and Co-alloy powders are the most promising candidates for the replacement of the traditional hard chrome plating. Surface properties, wear, and friction behaviors of micron size Co-alloy (T800) and micron size WC-l2Co (WC-Co) have been studied for the application as hard coatings. The temperature dependence of wear and friction behaviors of T800 and WC-Co have been investigated at the temperature of $25^{\circ}C$ and $538^{\circ}C$ for the application to high speed spindle.

WC-10Co4Cr으로 초고속 화염용사 코팅된 Cu 합금의 해수내 캐비테이션 손상 거동 (Behaviors of Cavitation Damage in Seawater for HVOF Spray Coated Layer with WC-10Co4Cr on Cu Alloy)

  • 한민수;김민성;장석기;김성종
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.264-271
    • /
    • 2012
  • Due to the good corrosion resistance and machinability, copper alloy is commonly employed for shipbuilding, hydroelectric power and tidal power industries. The Cu alloy, however, has poor durability, and the seawater application at fast flow condition becomes vulnerable to cavitation damage leading to economic loss and risking safety. The HVOF(High Velocity Oxygen Fuel) thermal spray coating with WC-10Co4Cr were therefore introduced as a replacement for chromium or ceramic to minimize the cavitation damage and secure durablility under high-velocity and high-pressure fluid flow. Cavitation test was conducted in seawater at $15^{\circ}C$ and $25^{\circ}C$ with an amplitude of $30{\mu}m$ on HVOF WC-10Co4Cr coatings produced by thermal spray. The cavitation at $15^{\circ}C$ and $25^{\circ}C$ exposed the substrate in 12.5 hours and in 10 hours, respectively. Starting from 5 hours of cavitation, the coating layer continued to show damage by higher than 160% over time when the temperature of seawater was elevated from $15^{\circ}C$ to $25^{\circ}C$. Under cavitation environment, although WC-10Co4Cr has good wear resistance and durability, increase in temperature may accelerate the damage rate of the coating layer mainly due to cavitation damage.

WC-Co합금의 X선 응력측정에 의한 탄성변형거동의 연구 (Studies on Elastic Deformation by X-ray Stress Measuremtnt of WC-Co Alloy)

  • 부명환;오세욱;광조신
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.105-114
    • /
    • 1994
  • 초경합금은 기계적 성질이 다른 WC의 분상상과 Co의 결합상으로 구성되어 있다. 만일 이합금이 거시적으로 균일하게 변형을 하면, 각 상들은 이들의 응력상태에 따라 다르게 변형될 것이다. 따라서 WC-Co 합금의 변형특성과 강화기구를 명확히 알기 위해서는 각상의 미시적 변형과 파괴기구를 검토할 필요가 있다. 본 연구에서는 시편에 굽힘하중을 가하여, X선 회절로 분산상인 WC상 및 결합상인 Co상의 X선적 탄성정수와 응력정수를 측정하였다. WC-Co합금중의 WC상과 Co상의 상응력은 WC(112)면과 CO(311)면의 회절로서 결정하였다. 그리고 이 상응력들을 복합법칙의 적용가능성에 대하여 검토하였다.

  • PDF

DLC박막을 코팅한 초경공구의 Al합금에 대한 절삭성능 향상 (Improvement of Cutting Performance of DLC Coated WC against Al Alloy)

  • 이규용
    • 동력기계공학회지
    • /
    • 제12권3호
    • /
    • pp.66-71
    • /
    • 2008
  • Diamond-like-carbon (DLC) coatings could be good candidates as solid lubricants for cutting tools in dry machining of aluminum alloy. In this work, DLC thin films were produced as a friction reduction coating for WC-Co insert tip using the plasma immersion ion beam deposition (PIIED) technique. DLC coatings were also coated on $Al_2O_3$ specimens and high temperature wear tested up to $400^{\circ}C$ in dry air to observe the survivability of the DLC coating in simulated severe cutting conditions using a pin-on-disc tribotester with Hertzian contact stress of 1.3GPa. It showed reduced friction coefficients of minimum 0.02 up to $400^{\circ}C$. And cutting performance of DLC coated WC-Co insert tips to Al 6061 alloy were conducted in a high speed machining center. The main problems of built-up edge formation in aluminum machining are drastically reduced with improved surface roughness. The improvements were mainly related to the low friction coefficient of DLC to Al alloy and the anti-adhesion of Al alloy to WE due to the inertness of DLC.

  • PDF

WC와 Co원료 입자크기 변화에 따른 WC-Co계 초경합금의 특성 변화 (Effect of Variation in Particle Size of WC and Co Powder on the Properties of WC-Co Alloys)

  • 정태주;안선용;백용균
    • 한국세라믹학회지
    • /
    • 제42권3호
    • /
    • pp.171-177
    • /
    • 2005
  • 서로 다른 입자크기를 갖는 WC와 Co 분말 원료를 사용하여 $WC-10\;wt\%$Co 초경합금을 제조하였다. 이로부터 WC와 Co 원로. 입자크기가 제조된 초경합금의 성질에 미치는 영향에 대해 고찰하였다. WC 원료 입자크기가 클수록 제조된 초경합금이 파괴인성이 높고 경도는 낮게 나타나는데, 이러한 경향은 Co 원료 입자크기에 크게 영향 받지 않음을 알 수 있었다. Co 원료 크기의 영향 외에도 Co 원료 크기가 초경합금의 특성에 영향을 주는 것으로 밝혀졌는데, 동일한 WC 원료를 사용하여도 미세한 Co 원료를 사용할 경우, 보다 조대한 WC를 함유하여 인성이 우수한 초경합금을 제조할 수 있었다. 이로부터 Co 원료 입자크기가 초경합금의 미세구조 및 그 특성에 중요한 역할을 함을 알 수 있었다

방전플라즈마 소결 공정을 이용한 WC-Co-Mo2C 소재의 기계적 특성평가 (Mechanical Property Evaluation of WC-Co-Mo2C Hard Materials by a Spark Plasma Sintering Process)

  • 김주훈;박현국
    • 한국재료학회지
    • /
    • 제31권7호
    • /
    • pp.392-396
    • /
    • 2021
  • Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 ㎛, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.

냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가 (Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies)

  • 권인우;서영호;정기호
    • 소성∙가공
    • /
    • 제27권6호
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.