• Title/Summary/Keyword: WAVE communication System

Search Result 630, Processing Time 0.03 seconds

Energy-efficient mmWave cell-free massive MIMO downlink transmission with low-resolution DACs and phase shifters

  • Seung-Eun Hong;Jee-Hyeon Na
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.885-902
    • /
    • 2022
  • The mmWave cell-free massive MIMO (CFmMIMO), combining the advantages of wide bandwidth in the mmWave frequency band and the high- and uniform-spectral efficiency of CFmMIMO, has recently emerged as one of the enabling technologies for 6G. In this paper, we propose a novel framework for energy-efficient mmWave CFmMIMO systems that uses low-resolution digital-analog converters (DACs) and phase shifters (PSs) to introduce lowcomplexity hybrid precoding. Additionally, we propose a heuristic pilot allocation scheme that makes the best effort to slash some interference from copilot users. The simulation results show that the proposed hybrid precoding and pilot allocation scheme outperforms the existing schemes. Furthermore, we reveal the relationship between the energy and spectral efficiencies for the proposed mmWave CFmMIMO system by modeling the whole network power consumption and observe that the introduction of low-resolution DACs and PSs is effective in increasing the energy efficiency by compromising the spectral efficiency and the network power consumption.

Distortion Compensation of Reconstructed Hologram Image in Digital Holographic Display Based on Viewing Window

  • Park, Minsik;Kim, Hyun-Eui;Choo, Hyon-Gon;Kim, Jinwoong;Park, Cheong Hee
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.480-492
    • /
    • 2017
  • A holographic display based on a viewing window enables the converging of a reconstruction wave into a viewing window by means of an optical system. Accordingly, a user can observe a reconstructed hologram image, even with a small diffraction angle. It is very difficult to manufacture an optical system with no aberrations; thus, it is inevitable that a certain amount of wave aberrations will exist. A viewing-window-based holographic display, therefore, always includes distortions in an image reconstructed from a hologram pattern. Compensating the distortions of a reconstructed image is a very important technical issue because it can dramatically improve the performance when reconstructing a digital three-dimensional content image from a hologram pattern. We therefore propose a method for suppressing image distortion by measuring and compensating the wave aberration calculated from a Zernike polynomial, which can represent arbitrary wave aberrations. Through our experimental configuration using only numerical calculations, our proposed method decreased the reconstructed image distortion by more than 28%.

A Quick Hybrid Atmospheric-interference Compensation Method in a WFS-less Free-space Optical Communication System

  • Cui, Suying;Zhao, Xiaohui;He, Xu;Gu, Haijun
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.612-622
    • /
    • 2018
  • In wave-front-sensor-less adaptive optics (WFS-less AO) systems, the Jacopo Antonello (JA) method belongs to the model-based class and requires few iterations to achieve acceptable distortion correction. However, this method needs a lot of measurements, especially when it deals with moderate or severe aberration, which is undesired in free-space optical communication (FSOC). On the contrary, the stochastic parallel gradient descent (SPGD) algorithm only requires three time measurements in each iteration, and is widely applied in WFS-less AO systems, even though plenty of iterations are necessary. For better and faster compensation, we propose a WFS-less hybrid approach, borrowing from the JA method to compensate for low-order wave front and from the SPGD algorithm to compensate for residual low-order wave front and high-order wave front. The correction results for this proposed method are provided by simulations to show its superior performance, through comparison of both the Strehl ratio and the convergence speed of the WFS-less hybrid approach to those of the JA method and SPGD algorithm.

A Study on Development of the EM Wave Absorber for ETC System

  • Park, Soo-Hoon;Kim, Dong-Il;Song, Young-Man;Yoon, Sang-Gil
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.2
    • /
    • pp.70-75
    • /
    • 2008
  • In this paper, the EM wave absorber was designed and fabricated for countermeasure against EMI from a ceiling of a tollgate in ETC system. We fabricated several samples in different composition ratios of MnZn-ferrite, Carbon, and CPE(Chlorinated Polyethylene). Absorption abilities were simulated in accordance with different thicknesses of the prepared absorbers and changed complex relative permittivity and permeability according to composition ratio. The optimized mixing ratio of MnZn-ferrite, Carbon, and CPE was found as 40:15:45 wt.% by experiments and simulation. Then the EM wave absorber was fabricated and tested using the simulated data. As a result, the developed EM wave absorber has the thickness of 3.3 mm and absorption ability was more than 20 dB in the case of normal incidence and more than 11 dB for the incident angle from 15 to 45 degrees at 5.8 GHz. Therefore, it was confirmed that the newly developed absorber can be used for ETC system.

Performance Evaluation of WAVE Communication System for the Next-Generation ITS (차세대 ITS를 위한 WAVE 통신 시스템 성능 평가)

  • Lee, Se-Yeun;Jeong, Han-Gyun;Shin, Dae-Kyo;Lim, Ki-Taeg;Lee, Myung-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1059-1067
    • /
    • 2011
  • Next-Generation ITS environment requires high-speed data packet transmission, security, authentication, and hand-over supportable for driving vehicle on road by installing RSEs and OBUs. Therefore, wireless communication technology for next-generation ITS services are advancing to 200km/h maximum speed supportable, 1km communication radius, minimum 10Mbps hish-speed datarate for multimedia data(such as text, images, movie clips and so on) supportable, high reliability. In this paper, we implemented WAVE communication system which based on IEEE 802.11p PHY/MAC and evaluated that the system meets next-generation ITS environments.

Wireless Access Technologies for Smart Highway: Requirements and Preliminary Results (스마트하이웨이 무선전송기술: 요구사항 및 기본시험결과)

  • Cho, Woong;Oh, Hyun-Seo;Park, Byoung-Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.237-244
    • /
    • 2011
  • Vehicular communications extend their application areas by combining communication technologies with roads/vehicles, and one of major applications is Smart Highway project. Smart Highway is a new advanced highway system which enhances the current highway system in Korea by improving reliability, safety and convenience. In this paper, we introduce wireless access technologies for vehicular communications especially focusing on Smart Highway. We first introduce the overall communication system architecture and the basic service and communication requirements for Smart Highway. Then, we discuss wireless access technologies including L2-level hand-over scheme. In addition, the results of experimental measurements of Wireless Access in Vehicular Environments (WAVE) system are introduced.

MMB System and Channel Model for 5th Generation Mobile Communication (5세대 이동통신을 위한 MMB 시스템 및 채널 모델)

  • Moon, Sangmi;Kim, Bora;Malik, Saransh;Kim, Jihyung;Lee, Moon-Sik;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.3-10
    • /
    • 2014
  • Millimeter wave (mmWave) has attracted great interest recently and the necessity of Millimeter Mobile Broadband (MMB) system has appeared based on the 4 Generation Long Term Evolution-Advanced (LTE-A) Specification. Currently, there are many studies about the mmWave communication channel. And it is subject of interest to analyze the performance in MMB channel environments. In this paper, we design the MMB system for 5th Generation mobile communication and propose channel models through the analysis of the mmWave propagation characteristics. Also, we have analyzed the performance of the MMB system of 28 GHz band in MMB channel environments.

Remote Monitoring of Patients and Emergency Notification System for U-Healthcare

  • Lee, Jun;Jang, Hyun-Se;Yang, Tae-Kyu;Seo, Yong-Ho
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • This study proposes a remote monitoring of patients and emergency notification system with a camera and pulse wave sensor for U-Healthcare. The proposed system is a server client model based U-Healthcare system which consists of wireless clients that have micro-controller, embedded-board for patient status monitoring and a remote management server. The remote management server observes the change of pulse wave data individually in real-time sent from the clients that is to be remote-monitored based on the pulse wave data stored by users and divides them into caution section and emergency section. When the pulse wave data of a user enters an emergency situation, the administrator can make a decision based on the real-time image information and pulse rate variability. When the status of the monitored patient enters the emergency section, the proposed U-healthcare system notifies the administrator and relevant institutions. An experiment was conducted to demonstrate the pulse wave recognition of the proposed system.

Link Budget of WAVE Communication System for a Reliable ITS Service under Highway Environments (고속도로 환경에서 안정적인 ITS서비스를 위한 WAVE 통신 시스템 link budget 분석)

  • Song, Yoo-seung;Yun, Hyun-jeong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.4
    • /
    • pp.80-85
    • /
    • 2015
  • The era of intelligent transportation system(ITS) has been arrived by applying information and communication technology(ICT) to the traffic. One of these technological advances is a wireless communication technology for a high speed vehicle to be connected to an infrastructure(V2I). A variety of road traffic safety services and operator comfort services are being developed by means of WAVE(Wireless Access in a Vehicular Environment) based on IEEE802.11p Standard. In this paper, the link budget is analyzed to provide a reliable quality of these ITS services. Log-distance model and two-ray model is employed for the wave propagation path loss model which is adequate for a highway environment. Reliable cell coverage is suggested for ITS services from the link budget.

Performance Analysis of High-Speed 5G MIMO System in mmWave Band (mmWave대역에서 고속 이동상태 5G MIMO 시스템 성능 분석)

  • Lee, Byung-Jin;Ju, Sang-Lim;Kim, Nam-il;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.103-109
    • /
    • 2018
  • One of the 5G goals is provide to high data rates for users moving at high speeds, such as trains. High mobility scenarios such as high speed train (HST) scenarios are expected to be typical scenarios for fifth generation communication systems. As the HST develops rapidly, it is necessary to transmit wireless communication data to train passengers, and the communication speed required by users is gradually increasing. HST users require high network capacity and stable communication services regardless of the location or speed of the HST communication system. Therefore, a transmission frame is constructed for the 5G mobile communication system in the mm band to be used for the fifth generation mobile communication, the HST communication system is implemented, and the performance of the wideband non-stationary MIMO HST channel is analyzed in the HST scenario.