• Title/Summary/Keyword: WAVE communication System

Search Result 631, Processing Time 0.027 seconds

Research on Radio Wave Communication Management Policy and System Improvement (전파관리정책 및 법 제도 개선 방안에 관한 연구)

  • Kim, Byoung-Chan;Kim, Ki-Moon;Yim, Jae-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1149-1159
    • /
    • 2008
  • Since the demand for radio wave due to proliferation of radio wave communication is increased rapidly, policy for efficient use of radio wave is a challenge of sustainable research for technology development in this field with focus on service supply and distribution. Therefore, this paper analyzed and reviewed radio wave related international agreements and overseas institutions and policies, and proposed the improvement method for systematic and efficient countermeasure on radio wave management policy and system according to radio wave promotion policy circumstance changes, radio wave environmental change and technology development.

A study on the Analysis of Radio Characteristics about Communication Mode in a Road (공용도로에서의 통신방식에 대한 전파특성 분석 연구)

  • Choi, Gi-Do;Lim, Ki-Taek;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2016
  • Vehicular communications is system which can be applied for transmission of various safety messages or Intelligent Transportation Systems(ITS) applications by combining vehicle/road technology with Information and Communication Technology(ICT). In recent years, a variety of ITS services are available such as driving information, road conditions, V2X messages as well as navigation and traffic jams notification. In general, vehicular communications can be used for vehicle-to-vehicle and vehicle-to-infrastructure communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments. In this paper, WAVE communication standard based on the IEEE802.11p is explained and signal characteristics in WAVE communication is introduced. Also, The H/W and S/W characteristics in Road Side Station and On Board Equipment for the Vehicle to Everything communication are analyzed. Received Signal Strength which is power of receiving signal of communication equipment is measured in test road to estimate the real WAVE communication's performance. It is shown that the implemented WAVE communication technology is satisfactory to provide ITS services.

Development of Millimeter-Wave Communication Modem for Mobile Wireless Backhaul in Mobile Hotspot Network

  • Choi, Seung Nam;Kim, Junhyeong;Kim, Il Gyu;Kim, Dae Jin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.212-220
    • /
    • 2014
  • The current cellular communications are optimized for low mobility users, meaning that their performance is degraded at high speed. Therefore, passengers in a high-speed train experience very poor radio link quality due to the significantly large number of simultaneous handovers. In addition, wireless data traffic is expanding exponentially in trains, subways and buses due to the widespread use of smartphones and mobile devices. To solve the inherent problem of cellular communication networks and meet the growing traffic demand, this paper proposes the mobile hotspot network of a millimeter-wave communication system as a mobile wireless backhaul. This paper describes the physical layer design of uplink and downlink in the proposed system, and the performances of uplink and downlink are evaluated under Rician fading channel conditions. The implemented baseband prototype of the proposed millimeter-wave communication modem is presented. This system can provide a Gbps data rate service in high-speed trains carrying hundreds of wireless Internet users.

Performance Evaluation of IEEE 802.11p Based WAVE Communication Systems at MAC Layer (MAC 계층에서의 IEEE 802.11p 기반 WAVE 통신 시스템의 성능 평가)

  • Choi, Kwang Joo;Kim, Jin Kwan;Park, Sang Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.526-531
    • /
    • 2014
  • Vehicular communications have been receiving much attention in intelligent transport systems(ITS) by combining communication technology with automobile industries. In general, vehicular communication can be used for vehicle-to-vehicle(V2V) and vehicle-to-infrastructure( V2I) communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environment(WAVE). WAVE system transmits signal in 5.835~5.925 GHz frequency band with orthogonal frequency division multiplexing(OFDM) signaling. In this paper, after 32 bit processed the channel monitoring in MAC(Media Access Control) layer of WAVE system implemented according to IEEE 802.11p standard, data were received and we evaluated the performance, we built the test bed consisting of OBU(On Board Unit) in the real expressway. We transmitted WSM(WAVE Short Message) and received WSM between OBU wirelessly. And then, we calculated channel occupancy time per one frame and throughput, and evaluated the performance.

Study on Applicability of Radio over Fiber system for 5G New Radio Access Technology (5G New Radio Access Technology를 위한 Radio over Fiber 시스템의 수용가능성 연구)

  • Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.9
    • /
    • pp.849-854
    • /
    • 2016
  • 5G New Radio Access Technology(: RAT) is studied by many researchers because the current radio frequency is insufficient to accommodate the increased mobile communication data traffic. However, there are few researches to study on the issue whether the wired mobile network can accommodate the new RAT. Therefore, in the paper, the study on the issue whether the Radio over Fiber(: RoF) system can accommodate the new RATs such as millimeter wave communication, terahertz communication, and optical wireless communication. As a result of the study, only millimeter wave communication deserve to be considered in ten years and even RoF system may not support the increased bandwidth of the millimeter wave communication when beamforming is used.

Physical Layer Issues in Vehicular Communications (차량통신에서의 물리계층 이슈)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1229-1234
    • /
    • 2012
  • Vehicular communications have been receiving much attention in intelligent transport systems (ITS) by combining communication technology with automobile industries. In general, vehicular communications can be used for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments (WAVE). WAVE system transmits signal in 5.9GHz frequency band with orthogonal frequency division multiplexing (OFDM) signaling. In this paper, we consider physical layer issues in vehicular communications. We first overview the physical (PHY) layer of WAVE standard and properties of 5.9GHz signals, and then physical layer issues to provide reliable communication link are discussed.

Implementation of mmWave long-range backhaul for UAV-BS

  • Jangwon Moon;Junwoo Kim;Hoon Lee;Youngjin Moon;Yongsu Lee;Youngjo Bang;Kyungyeol Sohn;Jungsook Bae;Kwangseon Kim;Seungjae Bahng;Heesoo Lee
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.781-794
    • /
    • 2023
  • Uncrewed aerial vehicles (UAVs) have become a vital element in nonterrestrial networks, especially with respect to 5G communication systems and beyond. The use of UAVs in support of 4G/5G base station (uncrewed aerial vehicle base station [UAV-BS]) has proven to be a practical solution for extending cellular network services to areas where conventional infrastructures are unavailable. In this study, we introduce a UAV-BS system that utilizes a high-capacity wireless backhaul operating in millimeter-wave frequency bands. This system can achieve a maximum throughput of 1.3 Gbps while delivering data at a rate of 300 Mbps, even at distances of 10 km. We also present the details of our testbed implementation alongside the performance results obtained from field tests.

Development of the EM Wave Absorber for the Hi-pass Using Amorphous Powder (비정질 재료를 이용한 Hi-pass용 전파흡수체 개발)

  • Yoo, Gun-Suk;Kim, Dong-Il;Choi, Dong-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.562-569
    • /
    • 2009
  • Recently, Hi-pass system(non-stop electric toll collection) using DSRC is working. However, it has various problems such as system errors by EM wave interference or multi-path reflection. The EM wave absorber is able to solve these problems. In this paper, we designed and fabricated EM wave absorber using amorphous substance. As a result EM wave absorber with composition of amorphous metal powder:CPE=45:55 wt.% has the thickness of 2.65 mm and absorption ability was higher than 40 dB at 5.8 GHz.

The Development of a Collision Warning System for Small-Sized Vessels Using WAVE Communication Technology (WAVE 통신을 이용한 소형선박 충돌경보시스템 개발 연구)

  • Kang, Won-Sik;Kim, Young-Du;Lee, Myoung-Ki;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • Wireless communication technology (WAVE) for vehicles, which is the core technology behind the next-generation intelligent transport system (C-ITS), is used to deliver information about vehicles to prevent traffic accidents and traffic situations that may arise between vehicles and infrastructure. Similar traffic issues often arise in marine scenarios. Currently, AIS is being used as a means of transmitting information such as the status of relative vessels, but research is being carried out to solve problems with AIS such as overloading by applying wireless communication technology for vehicles to the sea. In this study, a collision warning system suitable for small-sized vessels was developed based on the marine application of WAVE for vehicles verified through prior research, and the adequacy of this collision warning system was reviewed through a practical test. It is expected that this system will contribute greatly to future e-Navigation applications or self-driving ships as well as to preventing marine accidents.

Experimental Study of Metal Surface Wave Communication for Engine room of Vessels (선박 기관실에서의 금속체 표면파 통신 활용 연구)

  • Jin-Woo Kong;Hak-Sun Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.108-109
    • /
    • 2022
  • In this study analyzed experimental data on noise interference caused by engine operating apply surface wave communication in the engine room. For the experiment, 7 areas of the engine room on 256 ton tug boat and measured noise during engine on off using signal analyzer for effect surface wave communication. In order to construct and actual communication network based on the analysis of the noise and confirm the characteristics of surface wave communication in the area made metal bulkheads the actual communication network installed communication equipment between three metal bulkheads and conducted a comparative experiment with wireless communication. The difference was confirmed. As a result, in the case of surface wave communication, there was no significant difference in the transmission and reception rates before and after engine operation in an environment with three bulkheads, but in the case of Wi-Fi using wireless, the performance deteriorated significantly during operation. was confirmed. As a result of analyzing the experimental data, it was confirmed that noise caused by engine operation affects wireless communication but does not affect surface wave communication. Therefore, even in the area with a lot of electromagnetic wave noise in the ship, when the surface wave communication system is configured using the ship's metal structure, it is possible to replace the wireless communication and furthermore, it is possible to apply the surface wave communication in the enclosed space and the engine room in the ship.

  • PDF