• Title/Summary/Keyword: WATERSIDE GREENERY

Search Result 4, Processing Time 0.02 seconds

A Study on Effects of Artificial Structures on Bryophyte Diversity in Urban Greenery

  • Yoshitaka Ohishi;Ukihiro Morimoto
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.2
    • /
    • pp.109-113
    • /
    • 2004
  • It is important to consider urban parks and greenery not only from the viewpoint of amenity or aesthetics but also from the viewpoint of biodiversity. In this study, we focused on bryophytes (mosses), and analyzed how existence of artificial structures in urban greeney, such as concrete curbs and stone walls, affect species diversity of bryophytes. Kyoto Gyoen in Kyoto City, western Japan, was selected as the study site. In consideration of kinds of substrates on which bryophytes grow, microhabitats of Kyoto Gyoen were divided into ten types including concrete curbs and stone walls. In each type of microhabitats, we selected the area where bryophyte diversity was highest, and established a quadrat for bryophyte flora survey. Our results showed that the number of bryophyte species and growth forms and the value of diversity indices on concrete curbs or stone walls were higher than the averages of those. The bryophyte species were divided into the four groups by TWINSPAN as follows: Group A (epiphyte species), Group B (rocky species), Group C (roadsides, grassland or forest species), and Group D (waterside species). Bryophytes classified into Group B (rocky species) were mainly recorded on concrete curbs or stone walls. It was considered that the existence of artificial structures (concrete curbs and stone walls) provided favorite habitats for the bryophytes classified into Group B (rocky species), which mainly grows on concrete or rocks, and enhanced species diversity of bryophytes in Kyoto Gyoen.

  • PDF

A Study of Mounding Classification Analysis & Scale Calculation in Waterside Parks and Green Areas (수변 공원녹지의 마운딩 유형 및 규모산정 연구)

  • An, Byung-Chul;Bahn, Gwon-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.4
    • /
    • pp.77-87
    • /
    • 2017
  • In this study, we investigated the physical form of planting foundation of the parks and green spaces in the waterside of Korea and classified them into groups showing common features. It was clssified into 7 kinds of parks and green spaces of 27 waterside parks in Korea including landscape, ecology, art, shields, site boundaries, windbreaks, and soundproofing. As a result, the study was carried out on the detailed type and size estimation through the sampling survey of planting foundation of landscape and ecological type mounding which can be statistically analyzed. Landscape and ecological mounding have the characteristics of securing the ecological stability of the waterside planting areas and the diversity of planting landscape. It is possible to create a green landscape through various terrain changes such as enclosing, focusing, and panoramic view. The physical characteristics of ecological and landscape type mounding can be expressed as height, width, and length And physical data can appear in various forms and sizes depending on the purpose and function of the buffer effect of the land use in the waterside planting areas, the landscape creation, the ecological buffer. In this study, the range of the physical scale for landscape and ecological mounding of waterside parks and green spaces was calculated. The range of the mounding height was analyzed to be less than 1.25m and more than 1.25m and the average height was 0.74~1.08m and 1.75~2.75m respectively. In addition, the range of width of mounding was less than 6.13m, 6.13~17.5m, and more than 17.5m, and the average width of each was 3.45~4.95m, 7.05~10.85m and 31.54~51.54m respectively. The range for the length of mounding was less than 50m, 50~500m, and more than 500m. The mean length of each mounding was 34.0m, 116.3m and 955.8m. It is difficult to distinguish the difference between the waterside planting areas and the urban greenery in the purpose and function of landscape and ecological mounding. However, considering the average distance of 60m from the waterside and the average height of 1.26m, we can conclud that opened planting foundation is prefered to high mounding designs in waterside planting areas. It is expected that the results presented for the improvement of the logical and spatial value of the waterside parks and green areas planting foundation design can be served as the basic data helpful for practical application in landscape architecture planning and design.

A Study on Ecological Application to Buildings on the Streets for the Improvement of Environmental Harmony at Streetscape - Focused on the Three-dimensional Greenery System - (가로경관의 친환경성 증진을 위한 가로변건축물의 생태요소 적용에 관한 연구 - 입체녹화를 중심으로 -)

  • Jeong, Choon-kuk;Kim, Ki-hwan
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.13-18
    • /
    • 2008
  • Recently it is urgent issue in every department that problem from environmental disruption such as global warming. As the case of streetscape works essentially at city scenery, it is inevitable that changing from present view, which centers facilities and buildings, to environmental harmonic scenery. This study plans climate adjusting ability and improvement of thermal efficiency by putting ecological elements to buildings on a street which are essential factors of streetscape. Ultimately, this not only makes a pleasant environment but also revives being withered earth. Street-environment on eco-scape will take a part in designing sustainable city. This study acquires the way how buildings on a street get applied ecological elements as following. Roof level part : the greening surface of the rooftop(included plant box type), the greening roof as a type of pergola, the greening surface of the middle floor rooftop(included plant box type). Elevation part : climbing type, downfall type, espalier, flower bed in balcony type, wall-installing type, water wall type, other design types. Ground level part : paving the whole surface with permeability, paving the gap with permeability, plant box type, ground plant type, waterside zone, wetland, fence greening type, terrace greening type, retaining wall greening type.

Distribution of Culturable Bacteria of Bioaerosol according to Land Type in Winter in the City Center (도심지 겨울철 토지피복 유형별 바이오에어로졸 중 배양성 세균 분포)

  • Kim, Jeong-Ho;Yun, Yong-Han;Kim, Hak-Gi;Lee, Myeong-Hun;Park, Yeong-jin;Lee, Dong-Jae;Sin, Yong-jin
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.669-678
    • /
    • 2021
  • This study surveyed three land cover types in Chungju City in Chungcheongbuk Province to check the distribution of cultured bacteria in bio-aerosols according to land cover type. It was possible to compare and analyze the distribution of bacteria according to microclimatic changes at each measurement point by examining meteorological factors and bio-aerosols according to land cover. The microclimate temperature in each measurement point was 8.7℃ for the urban forest, 10.8℃ for the waterside green area, and 10.2℃ for the urban area, indicating the urban forest had the lowest temperature among the measurement points. The relative humanity was 61.8% fin the urban forest, 59.3% in the waterside green area, and 55.7% in the urban area, indicating that the urban forest was the most humid among the measurement points. The identified bacteria were found to be 43 genera and 99 species. In terms of species diversity of cultured bacteria, 22 genera were found in the waterside green area, 21 genera in the urban forest, and 17 genera in the urban area, 37 species were found in the waterside green area, 31 species in the urban area, and 31 species in the urban forest. Bacillus toyonensis and Pseudarthrobacter oxydan were the species present in all three types of measurement sites, and Herbiconiux flava was confirmed to inhabit green areas such as urban forests and waterside green areas. The analysis result of the bacterial concentration according to the microclimatic environment in each measurement point was 333 CFU/m3 in the urban forest, 287 CFU/m3, in the waterside green area, and 173 CFU/m3 in the downtown area. The relative humidity and wind speed were analyzed to show a similar trend as the concentration. This study is expected to provide basic data for healthy urban management and green area creation by identifying the distribution of cultured bacteria in bio-aerosols according to land cover type and comparing and analyzing the traits of bio-aerosol in each measurement point.