• Title/Summary/Keyword: WATERSHED

Search Result 3,658, Processing Time 0.033 seconds

Analysis of Runoff Reduction Effect of Flood Mitigation Policies based on Cost-Benefit Perspective (비용-편익을 고려한 홍수 대응 정책의 유출 저감 효과 분석)

  • Jee, Hee Won;Kim, Hyeonju;Seo, Seung Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.721-733
    • /
    • 2023
  • As the frequency of extreme rainfall events increase due to climate change, climate change adaptation measures have been proposed by the central and local governments. In order to reduce flood damage in urban areas, various flood response policies, such as low impact development techniques and enhancement of the capacity of rainwater drainage networks, have been proposed. When these policies are established, regional characteristics and policy-effectiveness from the cost-benefit perspective must be considered for the flood mitigation measures. In this study, capacity enhancement of rainwater pipe networks and low impact development techniques including green roof and permeable pavement techniques are selected. And the flood reduction effect of the target watershed, Gwanak campus of Seoul National University, was analyzed using SWMM model which is an urban runoff simulation model. In addition, along with the quantified urban flooding reduction outputs, construction and operation costs for various policy scenarios were calculated so that cost-benefit analyses were conducted to analyze the effectiveness of the applied policy scenarios. As a result of cost-benefit analysis, a policy that adopts both permeable pavement and rainwater pipe expansion was selected as the best cost-effective scenario for flood mitigation. The research methodology, proposed in this study, is expected to be utilized for decision-making in the planning stage for flood mitigation measures for each region.

Analysis of the Runoff Characteristics of Small Mountain Basins Using Rainfall-Runoff Model_Danyang1gyo in Chungbuk (강우-유출모형을 활용한 소규모 산지 유역의 유출특성 분석_충북 단양1교)

  • Hyungjoon Chang;Hojin Lee;Kisoon Park;Seonggoo Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.31-38
    • /
    • 2023
  • In this study, runoff characteristics analysis was conducted as a basic research to establish a forecasting and warning system for flood risk areas in small mountainous basins in South Korea. The Danyang 1 Bridge basin located in Danyang-gun, Chungcheongbuk-do was selected as the study basin, and the watershed characteristic factors were calculated using Q-GIS based on the digital elevation model (DEM) of the basin. In addition, nine heavy rainfall events were selected from 2020 to 2023 using hydrometeorological data provided by the National Water Resources Management Comprehensive Information System. HEC-HMS rainfall-runoff model was used to analyze the runoff characteristics of small mountainous basins, and rainfall-runoff model simulation was performed by reflecting 9 heavy rainfall events and calculated basin characteristic factors. Based on the rainfall-runoff model, parameter optimization was performed for six heavy rain events with large error rates among the simulated events, and the appropriate parameter range for the Danyang 1 Bridge basin, a small mountainous basin, was calculated to be 0.8 to 3.4. The results of this study will be utilized as foundational data for establishing flood forecasting and warning systems in small mountainous basin, and further research will be conducted to derive the range of parameters according to basin characteristics.

Identifying Degradation Causes of Endangered Freshwater Fish, Microphysogobio rapidus Using Habitat-Environmental Characteristics (멸종위기 야생생물 I급 여울마자 서식지 환경 특성 파악을 통한 훼손 원인 분석)

  • Ju-Duk Yoon;Keun-Sik Kim;Chang-Deuk Park;Dong-Won Kang;Heung-Heon Lee;Chi-Hong Lim;Nam-Shin Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.229-241
    • /
    • 2023
  • Microphysogobio rapidus is designated as endangered species class I by Ministry of Environment, and its distribution and population have been gradually declining, and it is now limited to the Nam River and some tributary streams of the Nakdong River Watershed. For the restoration of this highly endangered species, it is important to identify the causes of the decline and establish appropriate restoration plans. However, due to lack of basic data and ecological research, most steps are stagnant. Therefore, in this study, we identified the differences in the physical, biological, and sociological habitats between current and past distributed sites through field surveys and literature reviews. As a result of the field survey, there were differences in conductivity between the current and past distributed sites, and fish communities were also showed differences. The literature data also showed that the physico-chemical values of the past distributed sites were generally unfavorable, which generated negative consequences on biological factors. In particular, the effects of urbanization were found to be a major factor affecting the habitat of M. rapidus. Habitat stabilization is crucial for the recovery of this endangered species. However, in the past distributed sites, disturbances such as stream development and weir construction have altered streams physico-chemically and result in changes of M. rapidus. Therefore, a comprehensive plan that considers both stream connectivity and water quality is needed to manage and restore the habitat of M. rapidus.

Estimation of evaporation from water surface in Yongdam Dam using the empirical evaporation equaion (경험적 증발량 공식을 적용한 용담댐 시험유역의 수면증발량 추정)

  • Park, Minwoo;Lee, Joo-Heon;Lim, Yong-kyu;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.139-150
    • /
    • 2024
  • This study introduced a method of estimating water surface evaporation using the physical-based Penman combination equation (PCE) and the Penman wind function (PWF). A set of regression parameters in the PCE and PWF models were optimized by using the observed evaporation data for the period 2016-2017 in the Yongdam Dam watershed, and their effectiveness was explored. The estimated evaporation over the Deokyu Mountain flux tower demonstrated that the PWF method appears to have more improved results in terms of correlation, but both methods showed overestimation. Further, the PWF method was applied to the observed hydro-meteorological data on the surface of Yongdam Lake. The PWF method outperformed the PCE in the estimation of water surface evaporation in terms of goodness-of-fit measure and visual evaluation. Future studies will focus on a regionalization process which can be effective in estimating water surface evaporation for the ungauged area by linking hydrometeorological characteristics and regression parameters.

Hydrogeological Characteristics of Groundwater in Small Watershed of the Nakdong River Basin (낙동강 하류 소유역의 지하수와 하천수의 수리지질학적 특성)

  • Sieun Kim;SeongYeon Jung;MoonSu Kim;Youn-Tae Kim;Yong-Hoon Cha;Chung-Mo Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.72-84
    • /
    • 2024
  • Recently, the vulnerability of water resources has been increasing owing to climate change, highlighting the importance of groundwater. In particular, the Nakdong River Basin, located in the southern part of Korea, experiences frequent water scarcity phenomena, such as droughts. This study analyzed the hydrogeological characteristics of the study area by examining groundwater and stream water in the Gwangrye Stream, downstream of the Nakdong River Basin, in August and October 2023. Therefore, we collected samples from 54 groundwater wells and five streams for water quality analysis. The results of the field tests indicated an increasing trend in electrical conductivity from upstream to downstream in the study area. Laboratory analyses confirmed that the concentration of Na increased from upstream to downstream more than that of Ca. In conclusion, both stream water and groundwater were influenced by anthropogenic contamination. These changes were closely related to land use in the study area. The upstream areas are primarily composed of forests, whereas the downstream areas are composed of industrial complexes, wastewater treatment facilities, and agricultural areas, which are likely to affect both stream water and groundwater.

Spatial analysis of water shortage areas in South Korea considering spatial clustering characteristics (공간군집특성을 고려한 우리나라 물부족 핫스팟 지역 분석)

  • Lee, Dong Jin;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.87-97
    • /
    • 2024
  • This study analyzed the water shortage hotspot areas in South Korea using spatial clustering analysis for water shortage estimates in 2030 of the Master Plans for National Water Management. To identify the water shortage cluster areas, we used water shortage data from the past maximum drought (about 50-year return period) and performed spatial clustering analysis using Local Moran's I and Getis-Ord Gi*. The areas subject to spatial clusters of water shortage were selected using the cluster map, and the spatial characteristics of water shortage areas were verified based on the p-value and the Moran scatter plot. The results indicated that one cluster (lower Imjin River (#1023) and neighbor) in the Han River basin and two clusters (Daejeongcheon (#2403) and neighbor, Gahwacheon (#2501) and neighbor) in the Nakdong River basin were found to be the hotspot for water shortage, whereas one cluster (lower Namhan River (#1007) and neighbor) in the Han River Basin and one cluster (Byeongseongcheon (#2006) and neighbor) in the Nakdong River basin were found to be the HL area, which means the specific area have high water shortage and neighbor have low water shortage. When analyzing spatial clustering by standard watershed unit, the entire spatial clustering area satisfied 100% of the statistical criteria leading to statistically significant results. The overall results indicated that spatial clustering analysis performed using standard watersheds can resolve the variable spatial unit problem to some extent, which results in the relatively increased accuracy of spatial analysis.

Development and application of cellular automata-based urban inundation and water cycle model CAW (셀룰러 오토마타 기반 도시침수 및 물순환 해석 모형 CAW의 개발 및 적용)

  • Lee, Songhee;Choi, Hyeonjin;Woo, Hyuna;Kim, Minyoung;Lee, Eunhyung;Kim, Sanghyun;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.165-179
    • /
    • 2024
  • It is crucial to have a comprehensive understanding of inundation and water cycle in urban areas for mitigating flood risks and sustainable water resources management. In this study, we developed a Cellular Automata-based integrated Water cycle model (CAW). A comparative analysis with physics-based and conventional cellular automata-based models was performed in an urban watershed in Portland, USA, to evaluate the adequacy of spatiotemporal inundation simulation in the context of a high-resolution setup. A high similarity was found in the maximum inundation maps by CAW and Weighted Cellular Automata 2 Dimension (WCA2D) model presumably due to the same diffuse wave assumption, showing an average Root-Mean-Square-Error (RMSE) value of 1.3 cm and high scores of binary pattern indices (HR 0.91, FAR 0.02, CSI 0.90). Furthermore, through multiple simulation experiments estimating the effects of land cover and soil conditions on inundation and infiltration, as the impermeability rate increased by 41%, the infiltration decreased by 54% (4.16 mm/m2) while the maximum inundation depth increased by 10% (2.19 mm/m2). It was expected that high-resolution integrated inundation and water cycle analysis considering various land cover and soil conditions in urban areas would be feasible using CAW.

Utilizing deep learning algorithm and high-resolution precipitation product to predict water level variability (고해상도 강우자료와 딥러닝 알고리즘을 활용한 수위 변동성 예측)

  • Han, Heechan;Kang, Narae;Yoon, Jungsoo;Hwang, Seokhwan
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.471-479
    • /
    • 2024
  • Flood damage is becoming more serious due to the heavy rainfall caused by climate change. Physically based hydrological models have been utilized to predict stream water level variability and provide flood forecasting. Recently, hydrological simulations using machine learning and deep learning algorithms based on nonlinear relationships between hydrological data have been getting attention. In this study, the Long Short-Term Memory (LSTM) algorithm is used to predict the water level of the Seomjin River watershed. In addition, Climate Prediction Center morphing method (CMORPH)-based gridded precipitation data is applied as input data for the algorithm to overcome for the limitations of ground data. The water level prediction results of the LSTM algorithm coupling with the CMORPH data showed that the mean CC was 0.98, RMSE was 0.07 m, and NSE was 0.97. It is expected that deep learning and remote data can be used together to overcome for the shortcomings of ground observation data and to obtain reliable prediction results.

Water Quality Level Model Using the Discriminant Analysis for the Small Streams of Rural Area in the Han River Watersheds (판별분석을 이용한 한강권역 농업용 하천수의 수질등급모형)

  • Choi, Chul-Mann;Lee, Jong-Sik;Cho, Nam-Jun;Ryu, Hui-Yong;Park, Seong-Jin;Kim, Jin-Ho;Yun, Sun-Gang;Lee, Jeong-Taek
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • The main purpose of this work is the development of water quality level model using the data such as DO, EC, BOD, $COD_{Cr},\;NH_3-N,\;NO_3-N,\;PO_4-P$, T-N, T-P, and SS in 88 agricultural streams of the Han river watersheds. To grant water quality level for each parameters, it divided into 20% respectively in the order of water quality level. On the basis of the lowest water quality level, water quality of streams was assigned. As the result, number of stream corresponding to Level Ⅰ was 0, Level II was 1 stream, Level III was 3 streams, Level IV was 22 streams, and Level V was 62 streams. By standardized canonical discriminant function coefficient, $NO_3-N$ was the highest in 0.427 at the discriminant power. According to discriminant function for water quality level, it was equal to $-4.648+3.246{\times}[NO_3-N],\;-5.084+3.456{\times}[NO_3-N],\;-4.298+3.067{\times}[NO_3-N],\;and\;-7.369+4.396{\times}[NO_3-N]$ from Level II to Level V, respectively. As a result of test at real data of the Han river watersheds in 2007, the suitability of water quality level model was high to 88.4%.

Effect of Non-Agricultural Facilities on Water Quality and Contamination in Rural Area (농촌용수 수질관리를 위한 비농업시설의 영향 연구)

  • Lee, Byung-Sun;Um, Jae-Yeon;Kim, Yang-Bin;Woo, Nam-Chil;Nam, Kyoung-Phile;Lee, Jong-Min
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • This study was objected to identify the effect on water quality and contamination by non-agricultural facilities in 'A' reservoir watershed located in OO city, Kyounggi-do, Korea. Ground- and stream water samples showed (Na+K)-Cl, Ca(Cl, SO$_4$) and Ca-Cl type in an illegally discharging area of sewage and a densely industrial area indicating water contamination. Stream water of an illegally discharging area of sewage had high COD, T-N and T-P. In this area, direct incoming of sewage into stream water was induced ground water system by well pumping, and it made a progress of ground water contaminations with those components. Groundwater of a densely industrial area showed high concentrations of T-N, NO$_3$N. From a nitrogen isotope analysis, stream water of an illegally discharging area of sewage has ${\delta}^{15}N-NO_3$values of 0.7%0 was strongly affected by nitrogen originated from agrochemicals, and a densely industrial area of 19.7%0 from septic system. Ground- and stream water of a livestock fanning area were contaminated with NH$_3$-N and Mn, which was affected by intensive livestock facilities. SAR-conductivity plot indicates the water does not pose either alkalinity or salinity hazard for irrigation. COD, T-N, T-P, NO$3$-N, NH$_3$N and Mn concentrations from contaminated areas were diminished by mixing with 'A' reservoir water. There were no water contaminations in silver towns, vacationlands around reservoir and golf links. Consequently, it should be made a plan of systematic managements for past and- present possible contaminants and sewage systems in preventing water contamination by non-agricultural facilities.