• Title/Summary/Keyword: WATER DEPTH

Search Result 4,712, Processing Time 0.027 seconds

Environmental Characteristics According to the Depth in Deukryang Bay , Culturing Ground of Pen Shell ( Atrina Pectinata ) (수심에 따른 득량만 키조개 어장의 환경특성)

  • 최용규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.127-141
    • /
    • 1995
  • The distribution of water mass in Deukryang Bay was investigated using observational data obtained on July 12 (spring tide) and 19 (neap tide) in 1994. In characteristics of water mass at the bay the area is divided into three ones by a vertical attenuation coefficient k and a stratification parameter, log sub (10) (H/U super (3)), was H is depth, and U mean velocity in the bay. The contour of k=0.6 has a similar distribution to the isobath of 10m depth in spring tide, and of 5m depth in neap tide, respectively. This indicates that the water mass in the area between the isobath of 5m and 10m depth is changed by tidal periods. The stratification parameter corresponding to k=0.6 was 2.1~2.2. In the shallow water of 5m depth the characteristics of water mass was distributed in temperature of 25.5~31.$0^{\circ}C$ and salinity of 32.8~33.8PSU(Practical Salinity Unit), the temperature was high and the salinity distributed widely. In the deep water of 10m depth it was the temperature of 22.0~29.5$^{\circ}C$ and the salinity of 33.0~33.6PSU, the temperature was low and the salinity distributed narrowly. In the middle depth water of 5m to 10m depth, the temperature of 22.0~30.$0^{\circ}C$ and the salinity of 32.8~33.5PSU, its values showed the middle between the values of the deep area and the values of the shallow area.

  • PDF

Active Exchange of Water and Nutrients between Seawater and Shallow Pore Water in Intertidal Sandflats

  • Hwang, Dong-Woon;Kim, Gue-Buem;Yang, Han-Soeb
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.223-232
    • /
    • 2008
  • In order to determine the temporal and spatial variations of nutrient profiles in the shallow pore water columns (upper 30 cm depth) of intertidal sandflats, we measured the salinity and nutrient concentrations in pore water and seawater at various coastal environments along the southern coast of Korea. In the intertidal zone, salinity and nutrient concentrations in pore water showed marked vertical changes with depth, owing to the active exchange between the pore water and overlying seawater, while they are temporally more stable and vertically constant in the sublittoral zone. In some cases, the advective flow of fresh groundwater caused strong vertical gradients of salinity and nutrients in the upper 10 cm depth of surface sediments, indicating the active mixing of the fresher groundwater with overlying seawater. Such upper pore water column profiles clearly signified the temporal fluctuation of lower-salinity and higher-Si seawater intrusion into pore water in an intertidal sandflat near the mouth of an estuary. We also observed a semimonthly fluctuation of pore water nutrients due to spring-neap tide associated recirculation of seawater through the upper sediments. Our study shows that the exchange of water and nutrients between shallow pore water and overlying seawater is most active in the upper 20 cm layer of intertidal sandflats, due to physical forces such as tides, wave set-up, and density-thermal gradient.

The Vertical Fluxes of Particles and Radionuclides in the East Sea

  • Moon, Deok-Soo;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • v.35 no.1
    • /
    • pp.16-33
    • /
    • 2000
  • In order to measure the vertical fluxes of particles and reactive radionuclides such as thorium and polonium isotopes, Dunbar-type sediment traps were freely deployed at the Ulleung Basin and in warm and cold water masses around the polar front of the East Sea. We estimated the ratios of the catched (F) to the predicted $^234$Th fluxes (P) using natural tracers pair $^234$Th-$^238$U. The F/P ratios are decreased with increasing water depth. Whereas the concentrations of suspended particles are homogeneous in water column, the mass fluxes are also decreased with increasing water depth like the F/P ratios. These facts indicate that organic matters of settling particles are destructed within the euphotic layer due to decomposition. Whereas regenerations of sinking particles are negligible in the cold water mass, about 80% of them are regenerated in the warm water mass during falling of large particles. These downward mass fluxes are closely correlated with their primary productions in euphotic zone. The activities of $^234$Th, $^228$Th and $^210$Po in the sinking material were increased with water depth. Because $^234$Th steadily produced in the water column are cumulatively adsorbed on the surface of sinking particles, vertical $^234$Th fluxes were observed to increase with water depth. Therefore, these sinking particles play important roles in transporting the particle reactive elements like thorium from surface to the deep sea. The scavenging processes including adsorption and settling reactions generate radio-disequilibrium between daughter and parent nuclides in water column. The activity ratios of $^234$Th/$^238$U and $^228$Th/$^228$Ra were observed to be < 1.0 in the surface water and approached to be equilibrium below the thermocline. The extent of the deficiency of daughter nuclides compared to the parents nuclide was highly correlated with the vertical particle flux. Because most of the $^210$Po in the surface water are scavenged on a labile phase and are recycled at sub-surface depths (< 200 m), the $^210$Po are always observed to be excess activities compared to $^226$Ra in surface water.

  • PDF

Distribution of benthic organisms and growth and obesity of mussels (Mytilus coruscus) by depth in Geomundo, south coast of Korea (한국의 남해 거문도해역에 자생하는 홍합(Mytilus coruscus)의 수심별 성장, 비만도와 저서생물의 분포)

  • Bai, Jong Il;Hwang, Sung Il;Jung, Yeong Ho;Kim, Yu Jin;Kim, Dong Wook
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.19-31
    • /
    • 2021
  • We investigated the distribution characteristics of mussels (Mytilus coruscus) growing in the Geomundo sea area by water depth. The research was also conducted to identify the surrounding benthic organisms. Mussels showed high density and low obesity in low water depths. The lower the density, the higher the obesity level appeared in deeper water. The morphological characteristics also appeared to increase as the water depth deepened. In addition, the shell length and total weight were more strongly correlated at a depth of 12 m than at 2 m. The total weight by the growth of the shell length and shell height was affected by the water depth. The analysis showed that the density and biomass of the algae inhabiting the surroundings decreased somewhat as the water depth increased. In benthic animals, the number of mussels tended to decrease slightly at the point where oysters dominated, at a depth of 2 m. Conversely, the number of oysters tended to decrease in deeper water dominated by mussels. Thus, the spatial competition between oysters and mussels was affected by the water depth. Also, mussels did not appear in areas where large algae flourished, suggesting that the survival of mussels was affected by the presence or absence of large algae.

Optimal Rise Depth of the ESS Water Tank using Embossed Panel (ESS 물탱크 엠보싱 패널의 최적 절곡깊이)

  • Kim, Min June;Jeong, Je Pyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • This study is on the optimal rise depth of embossed panel for the ESS water tank. The thickness of panel is reduced at pressing operation, it could be calculated by volume conservation condition. The analysis of panel using STS304 material conducted by FEM. As a result of structural analysis, it was found that the optimal rise depth of arch embossed panel is recommended to be 70~90mm and the optimal rise depth of pyramid embossed panel is recommended to be 150~200mm. The proposed value of optimal rise depth could be a useful to the economic design of ESS water tank panel.

DISTRIBUTION OF ORGANIC MATTERS AND RELEASE CHARACTERISTICS IN DAM RESERVOIR

  • Lee, Yo-Sang;Kim, Woo-Gu;Koh, Deuk-Koo;Yang, Jae-Rheen
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.21-30
    • /
    • 2002
  • The inflow into a multi-purpose dam reservoir contains many suspended solids from the upper stream during the rainy season. Concentrations of SS increased to 73.3 mg/l and the TP measurement increased to 0.09 mg/l during the rainy season in 1999. It was discovered that particles less than $10\;\mu\textrm{m}$ in size composed about 50% of the total amount. Some of these particles reduce the reservoir capacity and have an impact on water. In this study, the sediment depth at Daecheong multi-purpose dam was examined. Piston coring was performed at 9 locations At Hoenam 1 out of 9 locations examined showed maximum depth, which was 90 cm and at Muneui 3 showed the minimum depth, which was 35 cm. At Hoenam, the release rate of TN was found to be $62.14~84.72\;mg/\textrm{m}^2{\cdot}day$ in 1998. However, it was found to considerably reduced to $23.20\;mg/\textrm{m}^2{\cdot}day$ in 2001. The release rate of TP was measured at $13.02~14.38\;mg/\textrm{m}^2$.day at 1998, and it was reduced to $6.93mg/\;mg/\textrm{m}^2{\cdot}day$ in 2001.

  • PDF

Skin depth profiling by using fiber optic probes in the near infrared

  • Woo, Young-Ah;jung, Suh-Eun;Kim, Hyo-Jin
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.218-218
    • /
    • 2003
  • Recently we showed the prototype portable device for the determination of human skin moisture by using near infrared spectroscopy. In order to optimize the acquiring condition of NIR spectrum of skin and control the target information of water depending the site such as epidermis and dermis, skin depth profiling was investigated changing the distance between illuminations and receiving of radiation in the terminal of fiber probe. The colleted light information could be controlled by changing the distance of the fiber optic probes. It was confirmed that the longer distance we used, the deeper site from the skin surface we could get information from in this study. Four kinds of probes with distances such as 0.03 mm, 0.1 mm, 0.5 mm, and 1.0 mm were used. In addition, the gap size from 0.3 mm to 3.0 mm was studied to control the intensity of water absorbance effectively and to avoid saturation of water absorption. We also investigated the reference materials depending the reflectance ratio for water absorption not to be saturated because of the strong absorptivity of water. Furthermore, spectroscopic information regarding free water and bound water around 1850 nm was investigated by using the different distance of fiber optic probes. This study would be great help to control the spectroscopic information of water to be measured depending the site where water exists.

  • PDF

The Effects of Water Exercise Program on Pennation Angle of the Lower Limb Muscle with Women in Their 20's

  • Cho, Hwa-Young;Kim, Moon-Jung;Yoon, Se-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.3
    • /
    • pp.55-59
    • /
    • 2010
  • Purpose: This study was designed to investigate the effect of a water exercise program on the pennation angle of the lower-limb muscle in women in their 20s. Methods: Ten female subjects were randomly divided into two groups, with 5 subjects exercising in water 0.7 m deep and 5 subjects exercising in water 1.4 m deep. They did the water exercising program for 40 minute per day, 3 days per week, for total 6 weeks. We measured the pennation angle of lower-limb muscle using ultrasonography. All measurements for each group were performed at pre-training and after 6 weeks of training. Results: The pennation angle was compared before and after the water exercise period for each group, and statistically significant changes within each group in measurements of the rectus femoris and tibialis anterior (p<0.05). However, there was no significant difference in muscle architecture by water depth (p>0.05) between the two groups. Conclusion: These results show that the pennation angle of the lower-limb muscle of women in their 20s changed after 6 weeks of participating in a water exercise program, but these changes were not dependent on the depth of the water in which the exercises were performed.

Measuring Water Depth by Using a Combination of GPS/Echosounder (음향측심기와 위성항법을 이용한 하천의 수심 측량)

  • 정영동;강상구
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.4
    • /
    • pp.375-381
    • /
    • 2002
  • Depth of water information is obtained mainly from echo-sounding instrument which observes the round-trip time of signal from water surface to the bottom. Photogrammetry, underwater survey and laser survey etc. are also used as another method of bathymetric surveying. These methods are used specially for making track chart in a shallow water area. On the other hand, aircraft or satellite imagery ara also used in the sea area where the effect of suspended material is low and water quality is good. Presently, general bathymetric surveying has been performed in our country, but the spatial density of surveyed point are relatively low. Therefore, in this study we built a grid water depth chart which measured combing echosounder with GPS-RTK method and the depth accuracy was analyzed by using the data of direct survey water depth. As a results, the bathymatric mapping which use echosounder is more economical method compared to the existing methods.

Calculating Water Volume of Reservoir using Robot-ship (로봇선을 이용한 저수량 산정에 관한 연구)

  • Choi, Byoung-Gil;Lee, Byung-Gul;Kang, Moon-Sun;Dolgorjav, Dolgorjav
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.51-54
    • /
    • 2007
  • This study is aimed to acquire the depth information and measure the water volume of reservoir using the robot-ship equipped with GPS and echosounder. Robot-ship is an automatic system for measuring exact depth and bed topography. According to field experiment results, measured water volume by the robot-ship data was not much exceeding 6.8% in comparison with existing water volume data, and it was guessed because of sediments of reservoir bottom. The robot-ship could be used to acquire economically and exactly the water depth and bed topography of reservoirs, dams, rivers and so on.

  • PDF