Browse > Article

Active Exchange of Water and Nutrients between Seawater and Shallow Pore Water in Intertidal Sandflats  

Hwang, Dong-Woon (Tidal-flat Research Center, National Fisheries Research and Development Institute)
Kim, Gue-Buem (School of Earth & Environmental Sciences/RIO, Seoul National University)
Yang, Han-Soeb (Department of Oceanography, Pukyong National University)
Publication Information
Ocean Science Journal / v.43, no.4, 2008 , pp. 223-232 More about this Journal
Abstract
In order to determine the temporal and spatial variations of nutrient profiles in the shallow pore water columns (upper 30 cm depth) of intertidal sandflats, we measured the salinity and nutrient concentrations in pore water and seawater at various coastal environments along the southern coast of Korea. In the intertidal zone, salinity and nutrient concentrations in pore water showed marked vertical changes with depth, owing to the active exchange between the pore water and overlying seawater, while they are temporally more stable and vertically constant in the sublittoral zone. In some cases, the advective flow of fresh groundwater caused strong vertical gradients of salinity and nutrients in the upper 10 cm depth of surface sediments, indicating the active mixing of the fresher groundwater with overlying seawater. Such upper pore water column profiles clearly signified the temporal fluctuation of lower-salinity and higher-Si seawater intrusion into pore water in an intertidal sandflat near the mouth of an estuary. We also observed a semimonthly fluctuation of pore water nutrients due to spring-neap tide associated recirculation of seawater through the upper sediments. Our study shows that the exchange of water and nutrients between shallow pore water and overlying seawater is most active in the upper 20 cm layer of intertidal sandflats, due to physical forces such as tides, wave set-up, and density-thermal gradient.
Keywords
submarine groundwater discharge; pore water; nutrients; sandflat Regional index terms; Korea; Ilkwang Bay; Nakdong River Estuary; Naro Island;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Boehm, A.B., A. Paytan, G.G. Shellenbarger, and K.A. Davis. 2006. Composition and flux of groundwater from a California beach aquifer: Implications for nutrient supply to the surf zone. Cont. Shelf Res., 26, 269-282   DOI   ScienceOn
2 Cable, J.E., J.B. Martin, P.W. Swarzenski, M.K. Lindenberg, and J. Steward. 2004. Advection within shallow pore waters of a coastal lagoon, Florida. Ground Water, 42, 1011-1020   DOI
3 Kelly, R.P. and S. B. Moran. 2002. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol. Oceanogr., 47, 1786-1807
4 Lambert, M. and W.C. Burnett. 2003. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements. Biogeochem., 66, 55-73   DOI   ScienceOn
5 Niencheski, L.F.H., H.L. Windom, W.S. Moore, and R.A. Jahnke. 2007. Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Mar. Chem., 106, 546-561   DOI   ScienceOn
6 Precht, E. and M. Huettel. 2003. Advective pore-water exchange driven by surface gravity waves and its ecological implications. Limnol. Oceanogr., 48, 1674-1684   DOI   ScienceOn
7 Robinson, C., B. Gibbes, H. Carey, and L. Li. 2006. Driving mechanisms for flow and salt transport in a subterranean estuary. Geophys. Res. Lett., 33, doi: 10.1029/2005GL025247
8 Rocha, C. 2000. Density-driven convection during flooding of warm, permeable intertidal sediments: the ecological importance of the convective turnover pump. J. Sea Res., 43, 1-14   DOI   ScienceOn
9 Shum, K.T. and B. Sundby. 1996. Organic matter processing in continental shelf sediments-the subtidal pump revisited. Mar. Chem., 53, 81-87   DOI   ScienceOn
10 Charette, M.A., E.R. Sholkovitz, and C.M. Hansel. 2005. Trace element cycling in a subterranean estuary: Part 1. Geochemistry of the permeable sediments. Geochim. Cosmochim. Acta, 69, 2095-2109   DOI   ScienceOn
11 Martin, J.B., J.E. Cable, P.W. Swarzenski, and M.K. Lindenberg. 2004. Enhanced submarine ground water discharge from mixing of pore water and estuarine water. Ground Water, 42, 1000-1010   DOI
12 Dolphin, T.J., T.M. Hume, and K.E. Parnell. 1995. Oceanographic processes and sediment mixing on a sand flat in an enclosed sea, Manukau Harbor, New Zealand. Mar. Geol., 128, 169-181   DOI   ScienceOn
13 Kim, G., J.W. Ryu, H.S. Yang, and S.T. Yun. 2005. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by $^{228}Ra$ and $^{226}Ra$ isotopes: Implications for global silicate fluxes. Earth Planet. Sci. Lett., 237, 156-166   DOI   ScienceOn
14 Burnett, W.C., H. Bokuniewicz, M. Huettel, W.S. Moore, and M. Taniguchi. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochem., 66, 3-33   DOI   ScienceOn
15 Riedl, R., N. Huang, and R. Machan. 1972. The subtidal pump: a mechanism of intertidal water exchange by wave action. Mar. Biol., 13, 210-221   DOI
16 Corbett, D.R., J. Chanton, W.C. Burnett, K. Dillon, C. Rutkowski, and J.W. Fourqurean. 1999. Patterns of groundwater discharge into Florida Bay. Limnol. Oceanogr., 44, 1045-1055   DOI   ScienceOn
17 Krest, J.M., W.S. Moore, L.R. Gardner, and J.T. Morris. 2000. Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements. Global Biogeochem. Cycles, 14, 167-176   DOI   ScienceOn
18 Rocha, C. 1998. Rhythmic ammonium regeneration and flushing in intertidal sediments of the Sado estuary. Limnol. Oceanogr., 43, 823-831   DOI   ScienceOn
19 Garrson, G.H., C.R. Glenn, and G.M. McMurtry. 2003. Measurement of submarine groundwater discharge in Kahana Bay, O'ahu, Hawaii. Limnol. Oceanogr., 48, 920-928   DOI   ScienceOn
20 Martin, J.B., J.E. Cable, J. Jaeger, K. Hartl, and C.G. Smith. 2006. Thermal and chemical evidence for rapid water exchange across the sediment-water interface by bioirrigation in the Indian River Lagoon, Florida. Limnol. Oceanogr., 51, 1332-1341   DOI
21 Kim, G. and D.W. Hwang. 2002. Tidal pumping of groundwater into the coastal ocean revealed from submarine $^{222}Rn$ and $CH_{4}$ monitoring. Geophys. Res. Lett., 29, doi: 10.1029/2002GL015093
22 Taniguchi, M. 2002. Tidal effects on submarine groundwater discharge into the ocean. Geophys. Res. Lett., 29, doi: 10.1029/2002GL014987
23 Swarzenski, P.W., C. Reich, K.D. Kroeger, and M. Baskaran. 2007. Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida. Mar. Chem., 104, 69-84   DOI   ScienceOn
24 Kim, G. 2002. Influence of submarine groundwater discharge for marine pollution and red-tide. p. 91-114. In: Proceedings of the autumn meeting, 2002, the Korean Society of Oceanography, Seoul
25 Burnett, W.C., G. Wattayakorn, M. Taniguchi, H. Dulaiova, P. Sojisuporn, S. Rungsupa, and T. Ishitobi. 2007. Groundwaterderived nutrient inputs to the upper Gulf of Thailand. Cont. Shelf Res., 27, 176-190   DOI   ScienceOn
26 Charette, M.A. and E.R. Sholkovitz. 2006. Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water. Geochim. Cosmochim. Acta, 70, 811-826   DOI   ScienceOn
27 Huettel, M. and I.T. Webster. 2001. Porewater flow in permeable sediments. p.144-179. In: the benthic boundary layer - transport processes and biogeochemistry, ed. by B.P. Boudreau and B.B. Jorgensen. Oxford University Press, London
28 Usui, T., I. Koike, and N. Ogura. 1998. Tidal effect on dynamics of pore water nitrate in intertidal sediment of a eutrophic estuary. J. Oceanogr., 54, 205-216   DOI   ScienceOn
29 Burnett, W.C., P.K. Aggarwal, A. Aureli, H. Bokuniewicz, J.E. Cable, M.A. Charette, E. Kontar, S. Krupa, K.M. Kulkarni, A. Loveless, W.S. Moore, J.A. Oberdorfer, J. Oliveira, N. Ozyurt, P. Povinec, A.M.G. Privitera, R. Rajar, R.T. Ramessur, J. Scholten, T. Stieglitz, M. Taniguchi, and J.V. Turner. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ., 367, 498-543   DOI   ScienceOn
30 Kuwae, T., E. Kibe, and Y. Nakamura. 2003. Effect of emersion and immersion on the porewater nutrient dynamics of an intertidal sandflat in Tokyo Bay. Estuar. Coast. Shelf Sci., 57, 929-940   DOI   ScienceOn
31 Robinson, C., L. Li, and D.A. Barry. 2007. Effect of tidal forcing on a subterranean estuary. Advan. Water Res., 30, 851-865   DOI   ScienceOn
32 Hwang, D.W., Y.W. Lee, and G. Kim. 2005. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnol. Oceanogr., 50, 1393-1403   DOI   ScienceOn
33 Charette, M.A., K.O. Buesseler, and J.E. Andrews. 2001. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnol. Oceanogr., 46, 456-470   DOI   ScienceOn
34 Na, T.H. and T. Lee. 2005. Estimation of denitrification in the Ganghwa tidal flat by a pore water model. J. Kor. Soc. Oceanogr. (The Sea), 10, 56-68   과학기술학회마을