• Title/Summary/Keyword: WAS 슬래브

Search Result 673, Processing Time 0.034 seconds

Development of Thermomechanical Coupled Numerical Model for Energy Slab (에너지 슬래브의 열-역학적 수치해석 모델 개발)

  • Park, Sangwoo;Choi, Hangseok;Lee, Seokjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.55-63
    • /
    • 2024
  • In this study, a thermomechanical numerical model was developed to evaluate the stability of energy slabs. First, a wall-type energy slab was installed in a residential underground parking lot, and thermal performance tests were conducted. Based on the tests, a numerical thermohydraulics model of the energy slab was developed to accurately simulate the thermal behavior in thermal performance tests. Finally, utilizing the temperature data acquired using the developed model, a thermomechanical numerical model of the energy slab was established. The thermomechanical model was then used to simulate the thermal stresses induced by operating the energy slab. The results demonstrated a maximum thermal stress of 5,300 kPa, which highlights the need to utilize cement mortar with sufficient tensile strength to realize stable operation of the energy slab.

Fabrication of Concrete Slabs for Precast Pavement Construction (조립식 포장 시공을 위한 콘크리트 슬래브 제작)

  • Park, Hee-Beom;Kim, Seong-Min;Park, Won-Joo;Lee, Seung-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.447-448
    • /
    • 2010
  • This study was conducted to investigate the feasibility of precast concrete slab fabrication. Slabs were designed including detailed element techniques, and based on the design, high performance precast slabs could be fabricated.

  • PDF

Flexural Performance and Cracking Resistance of Continuous Composite Slab using Micro Steel Fibers (마이크로 강섬유 콘크리트를 적용한 연속 합성슬래브의 휨 및 균열 저항성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Kim, Gap-Deug;Choi, Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.387-397
    • /
    • 2015
  • In the present study, to enhance the constructability, a composite slab system using deck plate and micro steel fiber concrete was studied. In the proposed slab system, on-situ re-bar placement is not required. Steel fibers replace the temperature reinforcement. The present study focused on the crack control at the slab top in the continuous composite slab without spliced bars. Eight continuous slabs with various parameters were tested under vertical loading. The test parameters were the amount and types of micro steel fibers, types of deck plate, and the use of top bars in the continuous slab. To evaluate the crack resistance of the slabs, crack widths were measured in the continuous slabs. The test results showed that although the top spliced bars were not used, cracking were restrained by large flexural stiffness of the composite sections.

Long-Term Performance Evaluation of a GFRP Slab Bridge (GFRP 슬래브 교량의 장기성능 평가)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.349-360
    • /
    • 2012
  • This paper describes a detailed assessment of the structural safety, serviceability, capacity rating and long-term performance of a glass fiber-reinforced polymer (GFRP) slab bridge superstructure. This first all-GFRP slab bridge was installed in Korea on May 2002. The GFRP slab bridge is a simply supported, its length is 10.0 m, and is designed to carry two-lane traffic and has an overall width of 8.0m. The GFRP slab bridge is a sandwich structure with a corrugated core, fabricated by hand lay-up process with E-glass fibers and vinyl ester resins. The assessment of long-term performance for the GFRP slab bridge in 2004, 2011 includes a field load testing identical to that performed in 2002. The assessment indicates that the GFRP slab bridge has no structural problems and is structurally performing well in-service as expected. The assessment may provide a baseline data for the capacity ratings assessment of the GFRP slab bridge and also serve as part of a long-term performance of all-GFRP bridge superstructure.

Evaluation of The Nonlinear Seismic Behavior of a Biaxial Hollow Slab (2방향 중공슬래브 구조시스템의 비선형 지진거동 평가)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Park, Hyun-Jae;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, there has been an increased interest in the noise isolation capacity of floor slabs, and thus an increase of slab thickness is required. In addition, long span floor systems are frequently used for efficient space use of building structures. In order to satisfy these requirements, a biaxial hollow slab system has been developed. To verify the structural capacity of a biaxial hollow slab system, safety verification against earthquake loads is essential. Therefore, the seismic behavior of a biaxial hollow slab system has been investigated using material nonlinear time history analyses. For efficient time history analyses, the equivalent plate element model previously proposed was used and the seismic capacity of the example structure having a biaxial hollow slab system has been evaluated using the nonlinear finite element model developed by the equivalent frame method. Based on analytical results, it has been shown that the seismic capacity of a biaxial hollow slab system is not worse than that of a flat plate slab system with the same thickness.

Experimental Study and Comparison of Analysis Results on Structural Method of Prestressed Concrete Slab Using Light Hybrid rib to Long Span (장스팬형 경량복합리브 PSC슬래브 구조공법에 관한 비교분석 및 실험적 연구)

  • Shim, Namju;Oh, Jungkeun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.5
    • /
    • pp.3-10
    • /
    • 2017
  • The HBS slab is a method in which a lightweight sieve is installed on top of the psc slab and two ribs of the neighboring psc slab are combined with ribs formed by the site concrete to act as a single member on the same axis. The purpose of this study is to implement the performance comparison with the existing method through the experimental study on the PSC slab method. In this study, the HBS slab was developed as a method to improve the limit of the existing method and the performance comparison with the existing method is tried to verify its superiority. The comparison of the structural performance with the existing method is carried out through the experimental study of the HBS slab, and the structural performance against the bending performance and shear and the bonding performance between the pc beam and the hbs slab are examined and compared with the existing method through the theoretical method.

Two-way Shear Strength Evaluation of Transfer Slab-Column Connections Through Nonlinear FE Analysis (비선형유한요소해석을 통한 전이슬래브-기둥 접합부의 2면 전단강도 평가)

  • Jeong, Seong-Hun;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.315-329
    • /
    • 2018
  • Recently, RC transfer slab systems have been used widely to construct high-rise wall-type apartments for securing parking space or public space. However, it is problem that the design method and structural performance evaluation method developed for thin RC flat slab are still used in the design of the transfer slab whose thickness is very thick and therefore structural behavior is expected to be different from RC flat slab. Thus, for the rational design of the transfer slab, the ultimate shear behavior of the RC transfer slab system is required to be analyzed properly. Accordingly, in the present study, the two-way shear behavior of the transfer slab was analyzed using nonlinear FEM according to various design parameters such as thickness of the transfer slab, strength of concrete, shear span ratio, and reinforcement ratio. In addition, the two-way shear strength evaluations of RC transfer slab by the existing evaluation methods were verified by comparing those with the results of nonlinear FEM analysis.

Design Methodology of Transverse Post-Tensioning for Prestressed Concrete Pavements (프리스트레스트 콘크리트 포장의 횡방향 긴장 설계방안)

  • Kim, Seong-Min;Yoon, Dong-Joo;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.269-279
    • /
    • 2008
  • This study was conducted to develop the design methodology of transverse post-tensioning for the prestressed concrete pavement (PSCP). The transverse stress distribution was analyzed when the transverse anchor spacing changed. The tensile stress distribution in the PSCP slab due to the environmental and vehicle loads was also investigated. The reasonable methods were discussed to determine the design loads including environmental and vehicle loads and the PSCP allowable tensile stress used for the basis of the selection of the stress application amount from the tensioning. The results of this study showed that as the transverse anchor spacing increased, the range of the stress loss became larger and the stress loss was significant near the shoulder. The design of the transverse post-tensioning can be performed by obtaining the stresses under the design loads and by considering the allowable tensile stress; however, the tensile stresses at different locations such as the shoulder, wheel pass, and slab interior should also be checked and kept below the allowable tensile stress.

  • PDF

A Fundamental Study for the Behavior of Lightweight Aggregate Concrete Slab Reinforced with GFRP Bar (GFRP bar를 휨보강근으로 사용한 경량골재콘크리트 슬래브의 거동에 관한 기초적 연구)

  • Jeon, Sang Hun;Shon, Byung Lak;Kim, Chung Ho;Jang, Heui Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • In this paper, to intend anticorrosive effect and weight reduction of conventional reinforced concrete slab, lightweight concrete slab reinforced with glass fiber reinforced polymer(GFRP) bar was considered and some basic behaviour of the slab were investigated. Measurement of splitting tensile strength and fracture energy of the concrete, a number of flexural experiment of the slab, numerical analysis using nonlinear finite element analysis, and comparison of the experimental results to the numerical analysis, were conducted. As a result, even the weight of the lightweight concrete slab could be reduced by about 28% than the normal concrete slab, failure load of the lightweight concrete slab was 36% smaller than the normal concrete slab. Such a thing can be attributed to the lower axial stiffness and lower bond strength of GFRP bar. In the numerical analysis, to consider decreasing property of bond strength of the lightweight concrete, interface element was used between the concrete and the GFRP bar elements and this method was shown to be a better way for the numerical analysis to approach the experimental results.

Analytical Study on Effect of Floor Slab for Progressive Collapse Resistant Capacity of Steel Moment Frames (철골모멘트골조의 연쇄붕괴저항성능에 대한 바닥슬래브의 효과에 관한 해석적 연구)

  • Kim, Seonwoong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • In this study, an improved energy-based nonlinear static analysis method are proposed to be used for more accurate evaluation of progressive collapse potential of steel moment frames by reflecting the contribution of a double-span floor slab. To this end, the behavior of the double-span floor slab was first investigated by performing material and geometric nonlinear finite element analysis. A simplified energy-absorbed analytical model by idealizing the deformed shape of the double-span floor slab was developed. It is shown that the proposed model can easily be utilized for modeling the axial tensile force and strain energy response of the double-span floor slab under the column-removal scenario.