• Title/Summary/Keyword: W.C.C.

Search Result 15,588, Processing Time 0.042 seconds

Experimental Study on Auto-Transmission Fluid Heat Exchanger for Improving Vehicle Fuel Efficiency (차량 연비개선을 위한 자동변속기유 열교환기에 대한 실험적 연구)

  • Jang, Chung-Man;Lee, Yong-Kyu;Kang, Byeong-Dong;Yoo, Jai-Suk;Lee, Jong-Hwa;Kim, Hyun-Jung;Kim, Dong-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.947-954
    • /
    • 2011
  • Drive-train friction loss in a vehicle may account for 4% of its total fuel consumption loss. An ATF W/C (auto-transmission fluid warmer/cooler) plate-fin heat exchanger is a type of heat exchanger that uses metal plates to transfer heat between the auto-transmission fluid and coolant. The use of an ATF W/C heat exchanger can result in a fuel economy improvement of about 1% in vehicles. An experimental setup for testing the thermal performance of an ATF W/C plate-fin heat exchanger is developed. In this study, the influence of the ATF and coolant, flow rates, and temperature on the efficiency of an ATF W/C heat exchanger are investigated experimentally. From the experimental data, a simple correlation for predicting the efficiency of an ATF W/C heat exchanger is proposed. On the basis of this correlation, the fuel economy of a vehicle with and without an ATF W/C heat exchanger is compared by using Simulink. Finally, it is shown that the fuel economy is improved by 0.992% when an ATF W/C heat exchanger is installed in the vehicle.

The Effect of Clothing Habits on Cold Acclimatization (의복착용 습관이 추위적응 능력에 미치는 영향)

  • 이종민;이순원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.3
    • /
    • pp.536-543
    • /
    • 1997
  • The subjects wearing cool clothing (C group) or warm clothing (W stoup) in daily life from September to February of the following year were tested to examine whether cold acclimatization takes place by clothing habits. Subjects rested at 25$\pm$1$^{\circ}C$, then were exposed to 15$\pm$1$^{\circ}C$, 50$\pm$5% R.H. for 90 min in September, November, December, and February. Rectal temperature (Tre) of C group after 90 min cold exposure did not drop below the Tre in $25^{\circ}C$ throughout the study. W group's Tre, however, dropped below the temperature in 25t from December. Shivering stopped after December in C group while W group continued to show it for the whole study. In resting, C group showed higher heat production than W group in February, and the rate of increase in heat production during cold exposure was smaller in C group than W group in February. C group showed less cold sensation than W group in the same coldness. These results suggest that the level of cold acclimatization may be improved by the habits wearing less clothes in daily life.

  • PDF

Evaluation of Creep Properties of W-substituted 2205 Duplex Stainless Steel (W치환 2205 이상 스테인리스강의 크리프 특성 평가에 관한 연구)

  • Kim, Gi-Yeob;Choi, Byong-Ho;Nam, Ki-Woo;Ahn, Yong-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2004
  • The effect of the substitution of Tungsten(W) for Molybdenum(Mo) on the creep behaviour of 22Cr-5Ni duplex stainless steel(DSS) has been investigated. Creep tests were carried out at $600^{\circ}C\;and\;650^{\circ}C$. Intermetallic ${\sigma}$ phase is precipitated during creep at $650^{\circ}C$, at which creep rupture time was much lower compared with at $600^{\circ}C$. The substitution of W for Mo in the duplex stainless steel was known to retard the formation of ${\sigma}$ phase. Minimum creep rate and creep rupture time, however, were hardly influenced by the substitution of 2wt.% W. An ultrasonic measurement for the creep specimens has been carried out for the evaluation of creep damage. The sound velocity increases propotionally with the increase of creep rupture time at $600^{\circ}C$ of creep temperature. On the contrary, the sound velocity decreases with the increase of rupture time at $650^{\circ}C$, which can be correlated with the microstructural evolution during creep.

Regression Model for Estimating Biomass of Natural Pinus densifrola Forests in Northeast Area of Mt. Paekdu (백두산 동북부지역 소나무 천연림 biomass 추정모델)

  • 김영환;이돈구;맹헌우
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.23-29
    • /
    • 1998
  • This study was carried out to develop the regression model for estimating biomass of natural Pinus densiflora forests by stand density in northeast Chinese area of Mt. Paekdu. Four allometric regression models(W=aD$^b$, W=a(D$^2$H)$^b$. logW=a+b$\cdot$ logD+cD and logW=a+b$\cdot$log(D$^2$H)+c(D$^2$H)) were used to estimate biomass for each of the tree components. The suitable regression model for estimating biomass of stem, bark and whole tree above ground was logW=a+b$\cdot$log(D$^2$H)+c(D$^2$H), and that for biomass of branch, needle and needle area, logW=a+b$\cdot$logD+cD for all of the stand density classes.

  • PDF

Influences of Water to Cement Ratio and Chemical Admixtures on the Quality of Inter-Locking Block (인터로킹 블록의 품질에 미치는 물시멘트비와 화학혼화제의 영향)

  • 이상태;김기철;신병철;김진선;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.157-160
    • /
    • 1998
  • KS F 4419, which is dealt with the Inter-Locking block, states that water to cement ratio for manufacturing inter-locking block should be less than 25% and in KS F4419, the use of admixture is shown to be reluctant to recommend. In this paper, reinvestigation of some regulations in KS F 4419 are carried out. According to the experimental results, as W/C increases, flexural strength and compressive strength are tended to decrease, whereas they increases within certain range, Flexural strength and compressive strength have higher values in 1:2(W/C=35%), 1:4(W/C=45%) and 1:6(W/C=55%) of mix proportions. Moreover they have rather higher values with the containment of high range AE water-reducing agent. The absorption ratios decrease with the increase of W/C and the containment of high range AE water-reducing agent. Therefore, the regulations on the W/C and admixture in KS F 4419 reguire revision.

  • PDF

WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS

  • Cao, Xiaohong
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.771-780
    • /
    • 2008
  • Let $M_C=\(\array{A&C\\0&B}\)$ be a $2{\times}2$ upper triangular operator matrix acting on the Hilbert space $H{\bigoplus}K\;and\;let\;{\sigma}_w(\cdot)$ denote the Weyl spectrum. We give the necessary and sufficient conditions for operators A and B which ${\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w\(\array{A&C\\0&B}\)\;or\;{\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w(A){\cup}{\sigma}_w(B)$ holds for every $C{\in}B(K,\;H)$. We also study the Weyl's theorem for operator matrices.

W-B-C-N 확산방지막에서 질소농도에 따른 Stress 에 대한 연구

  • So, Ji-Seop;Lee, Channg-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.72-73
    • /
    • 2005
  • Stress behavior was studied to investigate the internal behaviors of boron, carbon, and nitrogen in the 1000${\AA}$-thick tungsten boron carbon nitride (W-B-C-N) thin films. The impurities in the W-B-C-N thin films provide stuffing effects that were very effective for preventing the interdiffusion between interconnection metal and silicon substrate during the subsequent high temperature annealing process. The resistivity of W-B-C-N thin film decreases as an annealing temperature increase. The W-B-C-N thin films have compressive stress, and the stress value decreased up to $4.11\times10^{10}dyne/cm^2$ as an $N_2$ flow rate increases up to 3 sccm.

  • PDF

A MASCHKE-TYPE THEOREM FOR THE GRADED SMASH COPRODUCT C⋊kG

  • Kim, Eun-Sup;Park, Young-Soo;Yoon, Suk-Bong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.337-342
    • /
    • 1999
  • M. Cohen and S. Montgomery showed that a Maschke-type theorem for the smash product, which unlike the corresponding result for group actions, does not require any assumptions about the characterstic of the algebra. Our purpose in this paper is a Maschke-type theorem for the graded smash coproduct C⋊kG: let V be a right C⋊kG-comodule and W a C⋊kG-subcomoduleof V which is a C-direct summand of V. Then W is a C⋊kG-direct summand of V. Also this result is equivalent to the following : let V be a graded right C-comodule and W a graded subcomodule of V which has a complement as a C-subcomodule of V. Then W has a graded complement.

  • PDF

Bond Strength of Steel honeycomb Structure (철강 하니콤구조의 접합강도)

  • Song, Keun;Hong, Young Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.197-204
    • /
    • 2003
  • Honeycomb structure has been fabricated by brazing method using 0.1 wt%C and 1.0wt%C carbon steel core and STS304 stainless steel face sheet. Core shear strength ratio in W and L directions was 1:1.03 in 7 mm cell size, whereas 1:1.45 in 4 mm cell size. Flexural strength on face sheet was 166.4 MPa (0.1 wt%C, W direction), 171.1 MPa (0.1 wt%C, L direction), and 120.2 MPa (1.0 wt%C, W direction) in 7 mm cell size. And in 4mm cell size specimen, it was 169.2 MPa (0.1 wt%C, W direction), 224.2 MPa (0.1 wt%C, L direction). This means that flexural strength of 0.1 wt%C core material was higher than that of 1.0wt%C core material, which was contrary to expectation. SEM and EDS analysis represented that grain boundary diffusion had occurred in0.1 wt%C core, but no grain boundary diffusion in 1.0 wt%C core. And corrugated surface of 0.1 wt%C core was flat, whereas that of 1.0 wt%C core was not flat. As a result, contact area between two 1.0 wt%C cores was much less than that of 0.1 wt% cores, It is thought to be main reason for lower flexural strength of 1.0 wt%C core.

Cooling Performance of Horizontal Type Geothermal Heat Pump System for Protected Horticulture (시설원예를 위한 수평형 지열 히트펌프의 냉방성능 해석)

  • Ryou, Young-Sun;Kang, Youn-Ku;Kang, Geum-Chun;Kim, Young-Joong;Paek, Yee
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.90-95
    • /
    • 2008
  • It has become a big matter of concerns that the skill and measures against reduction of energy and cost for heating a protected horticultural greenhouse were prepared. But in these days necessity of cooling a protected horticultural greenhouse is on the rise from partial high value added farm products. In this study, therefore, a horizontal type geothermal heat pump system with 10 RT scale to heat and cool a protected horticultural greenhouse and be considered to be cheaper than a vertical type geothermal heat pump system was installed in greenhouse with area of $240\;m^2$. And cooling performances of this system were analysed. As condenser outlet temperature of heat transfer medium fluid rose from $40^{\circ}C$ to $58^{\circ}C$, power consumption of the heat pump was an upturn from 11.5 kW to 15 kW and high pressure rose from 1,617 kPa to 2,450 kPa. Cooling COP had the trend that the higher the ground temperature at 1.75 m went, the lower the COP went. The COP was 2.7 at ground temperature at 1.75 m depth of $25.5^{\circ}C$ and 2.0 at the temperature of $33.5^{\circ}C$ and the heat extraction rate from the greenhouse were 28.8 kW, 26.5 kW respectively at the same ground temperature range. 8 hours after the heat pump was operated, the temperature of ground at 60 cm and 150 cm depth buried a geothermal heat exchanger rose $14.3^{\circ}C$, $15.3^{\circ}C$ respectively, but the temperature of ground at the same depth not buried rose $2.4^{\circ}C$, $4.3^{\circ}C$ respectively. The temperature of heat transfer medium fluid fell $7.5^{\circ}C$ after the fluid passed through geothermal heat exchanger and the fluid rejected average 46 kW to the 1.5 m depth ground. It analyzed the geothermal heat exchanger rejected average 36.8 W/m of the geothermal heat exchanger. Fan coil units in the greenhouse extracted average 28.2 kW from the greenhouse air and the temperature of heat transfer medium fluid rose $4.2^{\circ}C$after the fluid passing through fan coil units. It was analyzed the accumulation energy of thermal storage thank was 321 MJ in 3 hours and the rejection energy of the tank was 313 MJ in 4 hours.