• Title/Summary/Keyword: W-Ni

Search Result 865, Processing Time 0.025 seconds

Effect of additives on the electrical properties of W/WC contacts (W/WC계 접점의 전기적 특성에 미치는 첨가물의 영향)

  • 신대승;이희웅;변우봉;한세원
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.112-114
    • /
    • 1988
  • W/WC-Cu/Ag contacts of 60wt%-40wt% base and contacts with additives(Ni, Co, C) of 1wt% below were prepared by a press-sinter-infiltrate process to compare with their physical properties and arc erosion characteristics. In physical properties, electrical conductivity of contacts with additive is lower than that of base contacts but hardness is higher. The results of arc test show that the erosion rate of contact with -0.1wt% Ni is decreased.

  • PDF

Studies on The Elution Behavior of Ni(II)-${\alpha}$-isonitroso-${\beta}$-diketone Imine Chelates in Reversed-Phase Liquid Chromatography

  • Lee, Won;Kim, In-Whan;Kim, Mi-Kyoung;Kim, Yong-Jun;Jung, Hae-Rim;No, Kyoung-Tai;Kim, Su-Yeon
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.519-527
    • /
    • 1995
  • The retention mechanism of Ni(II)-${\alpha}$-isonitroso-${\beta}$-diketone imine chelates in reversed-phase HPLC has been studied by examining the effect of temperature, mobile phase composition in acetonitrile-water mixture, and molecular structure on retention. The empirical retention equation was investigated to evaluate the properties of S (hydrophilic index). The value of the S index of the Ni(II) chelates decrease with the increasing column temperature and a linear relationship between S and log $k{_w}^{\prime}$ has been found. The results showed that the S index is influenced by the interaction between Ni(II) chelates and mobile phase. Molecular properties, van der Waals molar volume, polarizability and dipole moment, of the Ni(II) chelates were calculated by Cerius 2 program and the calculations were performed at Universal Force Field (UFF) model. The S value and log $k{_w}^{\prime}$ increase with decreasing the dipole moment of Ni(II) chelates.

  • PDF

Sintering of Ni-Zn Ferrites by Microwave Hybrid Heating (마이크로파 가열을 이용한 Ni-Zn 페라이트의 소결)

  • 김진웅;최승철;이재춘;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.669-674
    • /
    • 2002
  • Ni-Zn ferrite was sintered by microwave hybrid sintering method using microwave energy of 2.45 GHz, 700 W in the temperature range of 900$^{\circ}C$ ∼ 1070$^{\circ}C$. A high density (98%TD) Ni-Zn ferrite, added Bi$_2$O$_3$ and CuO, with a single phase was obtained by microwave sintering at 970$^{\circ}C$ for 15 min. All the sintered samples showed sintered density over 90% of TD. These results indicate that the processing time and energy consumption can be reduced significantly by microwave hybrid sintering method.

Characterization of Spherical NiO-YSZ Anode Composites for Solid Oxide Fuel Cells Synthesized by Ultrasonic Spray Pyrolysis

  • Lim, Chae-Hyun;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.243-247
    • /
    • 2014
  • Spherical NiO-YSZ particles were synthesized by ultrasonic spray pyrolysis (USP). The morphology of the synthesized particles can be modified by controlling parameters such as precursor pH, carrier-gas flow-rate, and temperature of the heating zone. The synthesized spherical NiO-YSZ particles have rough surface morphology at high carrier-gas flow-rates due to rapid gas exhaustion and insufficient particle ordering. The Ni-YSZ cermet anode synthesized by ultrasonic spray pyrolysis at a flow rate of l L/min, with precursor solution at pH4, showed a higher maximum power density of 256 $mW/cm^2$ compared to a conventionally mixed Ni-YSZ anode (185 $mW/cm^2$) at $800^{\circ}C$. While the area-specific resistance of conventionally mixed Ni-YSZ anodes increases gradually with operation time (indicating performance degradation), the Ni-YSZ anode synthesized by USP does not exhibit any performance degradation, even after 500 h.

Tribological Properties of Cu-Ni Alloy Nanopowders Synthesized by Pulsed Wire Evaporation (PWE) Method (전기 폭발법에 의해 제조된 Cu-Ni 나노 분말의 윤활성 향상)

  • Oh J.S.;Park J.H.;Kim W.W.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.376-382
    • /
    • 2004
  • Nanoscale Cu-Ni alloy nanopowders have been produced by a pulsed wire evaporation method in an inert gas. The effect of Cu-Ni alloy nanopowders as additives to motor oil on the tribological properties was studied at room temperature. The worn surfaces were characterized by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Cu-Ni alloy nanopowders as additives lowered coefficient of friction and wear rate. It was found that a copper containing layer on the worn surface was formed, and deposited layers of the metal cladding acted as lubricant on the worn surface, reducing the friction coefficient. It was clearly demonstrated that Cu-Ni alloy nanopowders as additives are able to restore the worn surface and to preserve the friction surfaces from wear.

Electrochemical Properties of NiO-YSZ Thin Films on 316 Stainless Steel Bipolar Plates Under a Simulated PEMFC Environment

  • Lee, W.G.;Jang, H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1177-1182
    • /
    • 2012
  • The corrosion resistance of 316L stainless steel coated with NiO-YSZ (Ni added yttria stabilized zirconia) was examined in a proton exchange membrane fuel cell (PEMFC) environment. The NiO-YSZ coating was carried out using a sol-gel dip coating method, and the corrosion resistance and interfacial contact resistance (ICR) were determined by the composition and morphology of the NiO-YSZ film. The corrosion resistance increased with increasing Ni content in the NiO-YSZ film, but rapid corrosion was observed when the YSZ film contained more than 15 wt % Ni due to surface cracks. The polarization resistance was improved by several orders of magnitude when 316L stainless steel was coated with a 15 wt % NiO-YSZ film compared to bare 316L. The ICR of the NiO-YSZ film was decreased to that of bare 316L when the YSZ film contained 25 wt % NiO, suggesting the possible application of NiO-YSZ coated stainless steel for a bipolar plate.

Exchange Coupling in NiFe/Ni Bilayer Fabricated By Electrodeposition

  • Kim, D.Y.;Jeon, S.J.;Kim, K.W.;Yoon, S.S.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.97-100
    • /
    • 2011
  • Bilayers of soft NiFe (150 nm-420 nm) on hard Ni (150 nm) were prepared by electrodeposition. The process of magnetization reversal in the NiFe/Ni bilayers was then investigated. The hysteresis loop generated by a magnetization reversal of soft NiFe under a positive saturation state of a hard Ni layer shows a shift along the negative field axis, which is clear evidence for the exchange spring effect in the NiFe/Ni bilayers. The dependence of the coercive field $H_c$ and exchange bias field Hex on the thickness of the NiFe layer was also investigated. As the NiFe thickness increases from 150 nm to 420 nm, both $H_c$ and $H_{ex}$ decrease rapidly from $H_c$= 51.7 Oe and $H_{ex}$ = 12.2 Oe, and saturate to $H_c$ = 5.8 Oe and $H_{ex}$ = 3.5 Oe.

Effect of High Frequency Heat Treatment on the Microstructure and Wear Properties of Ni based Self Fluxing Composite Coating Layer Manufactured by HVOF Spray Process (High Velocity Oxygen Fuel 공정으로 제조된 Ni 계 자용성 복합 코팅 소재의 미세조직과 마모 특성에 미치는 고주파 열처리의 영향)

  • Wi, Dong-Yeol;Ham, Gi-Su;Park, Sun-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.421-431
    • /
    • 2019
  • In this study, the formation, microstructure, and wear properties of Colmonoy 88 (Ni-17W-15Cr-3B-4Si wt.%) + Stellite 1 (Co-32Cr-17W wt.%) coating layers fabricated by high-velocity oxygen fuel (HVOF) spraying are investigated. Colmonoy 88 and Stellite 1 powders were mixed at a ratio of 1:0 and 5:5 vol.%. HVOF sprayed self-fluxing composite coating layers were fabricated using the mixed powder feedstocks. The microstructures and wear properties of the composite coating layers are controlled via a high-frequency heat treatment. The two coating layers are composed of ${\gamma}-Ni$, $Ni_3B$, $W_2B$, and $Cr_{23}C_6$ phases. Co peaks are detected after the addition of Stellite 1 powder. Moreover, the WCrB2 hard phase is detected in all coating layers after the high-frequency heat treatment. Porosities were changed from 0.44% (Colmonoy 88) to 3.89% (Colmonoy 88 + ST#1) as the content of Stellite 1 powder increased. And porosity is denoted as 0.3% or less by inducing high-frequency heat treatment. The wear results confirm that the wear property significantly improves after the high-frequency heat treatment, because of the presence of well-controlled defects in the coating layers. The wear surfaces of the coated layers are observed and a wear mechanism for the Ni-based self-fluxing composite coating layers is proposed.