• Title/Summary/Keyword: W-LED

Search Result 782, Processing Time 0.028 seconds

Comparison of Weather and Wave Data from Ocean Observation Buoys on the Southwestern Coast of Korea during Typhoon Muifa (태풍 무이파 내습시 서남해안 해양관측부이 기상파랑자료 비교 연구)

  • Yoon, Han-Sam;Kwon, Jun-Hyeok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.170-176
    • /
    • 2012
  • This paper analyzes the sea state and characteristics during the August 2011 passage of Typhoon Muifa based on data measured at four ocean weather/wave observation stations (buoys) located on the southwestern coast of Korea. When the typhoon arrived in the area approximately 230 km west of Mokpo at 9 PM on August 7, the decrease in air pressure led to increases in sea level of 25.64 cm at the Chilbal-do buoy, 16.43 cm at the Geomun-do buoy, and 9.60 cm at the Geoje-do buoy. The maximum wave height increased at the Geomun-do buoy about seven times faster than at the Chilbal-do buoy. The low water temperature at Chilbaldo during the typhoon passage probably reduced the wave energy. In the face of the oncoming typhoon, the southwest direction of the wind and waves may have been the result of external forces transporting seawater (energy) from the open sea toward the coast. The weather and ocean data from the Mara-do buoy were negatively correlated with those of Chilbal-do, whereas the data from Geomun-do had a positive correlation with those of Geoje-do.

New Liquid Crystal-Embedded PVdF-co-HFP-Based Polymer Electrolytes for Dye-Sensitized Solar Cell Applications

  • Vijayakumar, G.;Lee, Meyoung-Jin;Song, Myung-Kwan;Jin, Sung-Ho;Lee, Jae-Wook;Lee, Chan-Woo;Gal, Yeong-Soon;Shim, Hyo-Jin;Kang, Yong-Ku;Lee, Gi-Won;Kim, Kyung-Kon;Park, Nam-Gyu;Kim, Suhk-Mann
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.963-968
    • /
    • 2009
  • Liquid crystal (LC; E7 and/or ML-0249)-embedded, poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based, polymer electrolytes were prepared for use in dye-sensitized solar cells (DSSCs). The electrolytes contained 1-methyl-3-propylimidazolium iodide (PMII), tetrabutylammonium iodide (TBAI), and iodine ($I_2$), which participate in the $I_3^-/I^-$ redox couple. The incorporation of photochemically stable PVdF-co-HFP in the DSSCs created a stable polymer electrolyte that resisted leakage and volatilization. DSSCs, with liquid crystal(LC)-embedded PVdF-co-HFP-based polymer electrolytes between the amphiphilic ruthenium dye N719 absorbed to the nanocrystalline $TiO_2$ photoanode and the Pt counter electrode, were fabricated. These DSSCs displayed enhanced redox couple reduction and reduced charge recombination in comparison to that fabricated from the conventional PVdF-co-HFP-based polymer electrolyte. The behavior of the polymer electrolyte was improved by the addition of optimized amounts of plasticizers, such as ethylene carbonate (EC) and propylene carbonate (PC). The significantly increased short-circuit current density ($J_{sc}$, $14.60\;mA/cm^2$) and open-circuit voltage ($V_{oc}$, 0.68 V) of these DSSCs led to a high power conversion efficiency (PCE) of 6.42% and a fill factor of 0.65 under a standard light intensity of $100\;mW/cm^2$ irradiation of AM 1.5 sunlight. A DSSC fabricated by using E7-embedded PVdF-co-HFP-based polymer electrolyte exhibited a maximum incident photon-to-current conversion efficiency (IPCE) of 50%.

Effect of Treatment Amounts of Slurry Composting and Biofiltration Liquid Fertilizer on Growth Characteristics and Bioethanol Production of Yellow Poplar (SCB액비 처리량에 따른 백합나무의 생장 및 바이오에탄올 생산)

  • Kim, Ho-Yong;Gwak, Ki-Seob;Kim, Hye-Yun;Ryu, Keun-Ok;Kim, Pan-Gi;Cho, Do-Hyun;Choi, Jin-Yong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.459-468
    • /
    • 2011
  • The main purpose of this study was to examine the influence of treatment amounts of Slurry Composting and Biofiltration liquid fertilizer (SCBLF) on biomass growth of Yellow poplar (Liriodendron tulipifera) and to compare bioethanol production from the harvested wood. Relative growth rate, biomass production and leaf characteristics were significantly enhanced by SCBLF treatment and medium treatment plot showed highest value. Nitrogen compounds and water content in SCBLF affected to increase chlorophyll contents which led improving biomass production (64.67%) and glucose contents (6.07%) than control. Organosolv and dilute acid pretreatments were preliminarily carried for bioethanol production, and the pretreatment processes were conducted at all the same solid to liquid ratio (1 : 10), reaction temperature ($150^{\circ}C$), preheating time (40 min) and residence time (10 min). The water insoluble solid recovery of Organosolv pretreatment with 1% sulfuric acid as a catalyst was the lowest and that of medium treatment plot was 44.81%. Exchangeable cations in SCBLF might be affected to increase pretreatment effect. The simultaneous saccharification and fermentation process was followed to determine the ethanol production of the pretreated biomass. The highest ethanol production yield based on initial weight was obtained from high treatment plotby Organosolv pretreatment with 1% sulfuric acid (16.11%). But regarding biomass production, medium treatment plot produced most, and bioethanol production was increased by 72.93% than control.

Growth of Hexagonal Boron Nitride Thin Films on Silicon Using a Single Source Precursors

  • Boo, Jin-Hyo;Lee, Soon-Bo;Casten Rohr;Wilson Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.120-120
    • /
    • 1998
  • Boron nitride (BN) films have attracted a growing interest for a variety of t technological applications due to their excellent characteristics, namely hardness, c chemical inertness, and dielectrical behavior, etc. There are two crystalline phases 1551; of BN that are analogous to phases of carbon. Hexagonal boron nitride (h-BN) has a a layered s$\sigma$ucture which is spz-bonded structure similar to that of graphite, and is t the stable ordered phase at ambient conditions. Cubic boron nitride (c-BN) has a z zinc blende structure with sp3-bonding like as diamond, 따ld is the metastable phase a at ambient conditions. Among of their prototypes, especially 삼Ie c-BN is an i interesting material because it has almost the same hardness and thermal c conductivity as di없nond. C Conventionally, significant progress has been made in the experimental t techniques for synthesizing BN films using various of the physical vapor deposition 밍ld chemical vapor deposition. But, the major disadvantage of c-BN films is that t they are much more difficult to synthesize than h-BN films due to its narrow s stability phase region, high compression stress, and problem of nitrogen source c control. Recent studies of the metalorganic chemical vapor deposition (MOCVD) of I III - V compound have established that a molecular level understanding of the d deposition process is mandatory in controlling the selectivity parameters. This led t to the concept of using a single source organometallic precursor, having the c constituent elements in stoichiometric ratio, for MOCVD growth of 삼Ie required b binary compound. I In this study, therefore, we have been carried out the growth of h-BN thin f films on silicon substrates using a single source precursors. Polycrystalline h-BN t thin films were deposited on silicon in the temperature range of $\alpha$)() - 900 $^{\circ}$C from t the organometallic precursors of Boron-Triethylamine complex, (CZHs)3N:BRJ, and T Tris(dimethylamino)Borane, [CH3}zNhB, by supersonic molecular jet and remote p plasma assisted MOCVD. Hydrogen was used as carrier gas, and additional nitrogen w was supplied by either aDlIDonia through a nozzle, or nitrogen via a remote plasma. T The as-grown films were characterized by Fourier transform infrared spectroscopy, x x-ray pthotoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, t transmission electron diffraction, optical transmission, and atomic force microscopy.roscopy.

  • PDF

The Role and Regulation of MCL-1 Proteins in Apoptosis Pathway

  • Bae, Jeehyeon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.113-113
    • /
    • 2002
  • Phylogenetically conserved Bcl-2 family proteins play a pivotal role in the regulation of apoptosis from virus to human. Members of the Bcl-2 family consist of antiapoptotic proteins such as Bcl-2, Bcl-xL, and Bcl-w, and proapoptotic proteins such as BAD, Bax, BOD, and Bok. It has been proposed that anti- and proapoptotic Bcl-2 proteins regulate cell death by binding to each other and forming heterodimers. A delicate balance between anti- and proapoptotic Bcl-2 family members exists in each cell and the relative concentration of these two groups of proteins determines whether the cell survives or undergoes apoptosis. Mcl-1 (Myeloid cell :leukemia-1) is a member of the Bcl-2 family proteins and was originally cloned as a differentiation-induced early gene that was activated in the human myeloblastic leukemia cell line, ML-1 . Mcl-1 is expressed in a wide variety of tissues and cells including neoplastic ones. We recently identified a short splicing variant of Mcl-1 short (Mcl-IS) and designated the known Mcl-1 as Mcl-1 long (Mcl-lL). Mcl-lL protein exhibits antiapoptotic activity and possesses the BH (Bcl-2 homology) 1, BH2, BH3, and transmembrane (TM) domains found in related Bcl-2 proteins. In contrast, Mcl-1 S is a BH3 domain-only proapoptotic protein that heterodimerizes with Mcl-lL. Although both Mc1-lL and Mcl-lS proteins contain BH domains fecund in other Bcl-2 family proteins, they are distinguished by their unusually long N-terminal sequences containing PEST (proline, glutamic acid, serine, and threonine) motifs, four pairs of arginine residues, and alanine- and glycine-rich regions. In addition, the expression pattern of Mcl-1 protein is different from that of Bcl-2 suggesting a unique role (or Mcl-1 in apoptosis regulation. Tankyrasel (TRF1-interacting, ankyrin-related ADP-related polymerasel) was originally isolated based on its binding to TRF 1 (telomeric repeat binding factor-1) and contains the sterile alpha motif (SAM) module, 24 ankyrin (ANK) repeats, and the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP). Previous studies showed that tankyrasel promotes telomere elongation in human cells presumably by inhibiting TRFI though its poly(ADP-ribosyl)action by tankyrasel . In addition, tankyrasel poly(ADP-ribosyl)ates Insulin-responsive amino peptidase (IRAP), a resident protein of GLUT4 vesicles, and insulin stimulates the PARP activity of tankyrase1 through its phosphorylation by mitogen-activated protein kinase (MAPK). ADP-ribosylation is a posttranslational modification that usually results in a loss of protein activity presumably by enhancing protein turnover. However, little information is available regarding the physiological function(s) of tankyrase1 other than as a PARP enzyme. In the present study, we found tankyrasel as a specific-binding protein of Mcl-1 Overexpression of tankyrasel led to the inhibition of both the apoptotic activity of Mel-lS and the survival action of Mcl-lL in mammalian cells. Unlike other known tankyrasel-interacting proteins, tankyrasel did not poly(ADP-ribosyl)ate either of the Mcl-1 proteins despite its ability to decrease Mcl-1 proteins expression following coexpression. Therefore, this study provides a novel mechanism to regulate Mcl-1-modulated apoptosis in which tankyrasel downregulates the expression of Mcl-1 proteins without the involvement of its ADP-ribosylation activity.

  • PDF

A Study of a Method to Evaluate the Corrosion Resistance of Al2O3 Coated Vacuum Components for Semiconductor Equipment (반도체 장비용 Al2O3 코팅 진공부품의 내부식성 평가 연구)

  • You, S.M.;Yun, J.Y.;Kang, S.W.;Shin, J.S.;Seong, D.J.;Shin, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.175-182
    • /
    • 2008
  • This study is concerned with the evaluation of the corrosion resistance of coated semiconductor equipment parts with various processes. To select the appropriate basis for evaluation, replacement parts were observed during the semiconductor manufacturing process. This study also ran a dry corrosion test using $Al_2O_3$, which is mostly used as a coating material. This test quantitatively measured the efficiency of coated parts. Surface morphology, leakage current and breakdown voltage were also evaluated. This study showed that a dry corrosion process led to the drop of electrical properties, for example, the leakage current increase and the dielectric strength decrease. The surface morphology test displayed that surface damage is largely dependent on the exposure time to corrosive environments. By using the values that changed during the corrosion process, it may be possible to contrive a method to evaluate the efficiency of coated parts with various processes.

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

Optimal Culture Conditions and XAD Resin on Tropane Alkaloid production in Scopolia parviflora Hairy Root Cultures (미치광이풀 모상근의 배양조건 구명 및 XAD Resin 처리에 의한 Tropane Alkaloid 생산)

  • 정희영;강민정;강영민;윤대진;박정동;정영관;최명석
    • KSBB Journal
    • /
    • v.17 no.6
    • /
    • pp.525-530
    • /
    • 2002
  • The optimum culture conditions for tropane alkaloid production in hairy root cultures of Korea native Scopolia paviflora Nak. were investigated. Hairy root was induced from the rhizome of the mother plant on B5 medium containing 1.0 mg/L IBA. Among the culture media examined, 1/2 B5 medium was the best for tropane alkaloid production, whereas the growth of hairy root increased in SH medium. The best result on the growth of hairy root was obtained in 1.0 mg/L NAA, and tropane alkaloid production was obtained in plant growth regulator-free medium. Of the carbone sources tested, 3% sucrose promoted the growth of hairy root, whereas 5% sucrose increased tropane alkaloid production. Optimum inoculum densities for root growth and tropane alkaloid production were 0.5 g and 1 g, respectively. The addition of XAD resins (1 % w/v) to hairy root cultures led to increases in tropans alkaloid production, and the release of alkaloid into the medium and its adsorption by the resin accounted for about 50 to 80% of total production. It is concluded that optimized culture conditions and the addition of XAD resins could be used in the development of a bioprocess for tropane alkaloid production in hairy root cultures of S. paviflora Nak.

Repression of HspA2 mRNA Expression in Human Testes with Abnormal Spermatogenesis (비정상적 정자형성 환자의 정소에서 Heat Shock Protein A2 (hspA2) mRNA 발현의 감소)

  • Son, W.Y.;Hwang, S.H.;Han, C.T.;Lee, J.H.;Kim, S.J.;Kim, Y.C.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.1
    • /
    • pp.103-109
    • /
    • 1999
  • Objective: Heat shock protein 70-2 (Hsp70-2) gene knockout mice are found to have premeiotic arrest at the primary spermatocyte stage with a complete absence of spermatids and spermatozoa. This observation led to the hypothesis that hspA2 may be disrupted in human testes with abnormal spermatogenesis. To test this hypothesis, we studied the mRNA expression of hspA2 in infertile men with azoospermia. Design: The mRNA expression were analyzed by competitive RT-PCR among testes with normal spermatogenesis, pachytene spermatocyte arrest, and sertoli-cell only syndrome. Materials and methods: Testicular biopsy was performed in men with azoospermia (n=15). Specimens were subdivided into three groups: (group 1) normal spermatogenesis (n=5), (group 2) spermatocyte arrest (n=5), (group 3) Sertoli-cell only syndrome (n=5). Total RNA was extracted by Trizol reagent. Total extracted RNA was reverse transcribed into cDNA and amplified by PCR using specific primers for hspA2 target cDNAs. A competitive cDNA fragment was constructed by deleting a defined fragment from the target cDNA sequence, and then coamplified with the target cDNA for competitive PCR. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as an internal control. Results: On Competitive RT-PCR analyses for hspA2 mRNA, significant amount of hspA2 expression was observed in group 1, whereas a constitutively low level of hspA2 was expressed in groups 2 and 3. Conclusion(s): The study demonstrates that the hspA2 gene expression is down-regulated in human testes with abnormal spermatogenesis, which in turn suggests that hspA2 gene may play a specific role during meiosis in human testes.

  • PDF

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.