• Title/Summary/Keyword: W L R

Search Result 913, Processing Time 0.027 seconds

Depth Control and Sweeping Depth Stability of the Midwater Trawl (중층트롤의 깊이바꿈과 소해심도의 안정성)

  • 장지원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.1-18
    • /
    • 1973
  • For regulating the depth of midwater trawl nets towed at the optimum constant speed, the changes in the shape of warps caused by adding a weight on an arbitrary point of the warp of catenary shape is studied. The shape of a warp may be approximated by a catenary. The resultant inferences under this assumption were experimented. Accordingly feasibilities for the application of the result of this study to the midwater trawl nets were also discussed. A series of experiments for basic midwater trawl gear models in water tank and a couple of experiments of a commercial scale gears at sea which involve the properly designed depth control devices having a variable attitude horizontal wing were carried out. The results are summarized as follows: 1. According to the dimension analysis the depth y of a midwater trawl net is introduced by $$y=kLf(\frac{W_r}{R_r},\;\frac{W_o}{R_o},\;\frac{W_n}{R_n})$$) where k is a constant, L the warp length, f the function, and $W_r,\;W_o$ and $W_n$ the apparent weights of warp, otter board and the net, respectively, 2. When a boat is towing a body of apparent weight $W_n$ and its drag $D_n$ by means of a warp whose length L and apparent weight $W_r$ per unit length, the depth y of the body is given by the following equation, provided that the shape of a warp is a catenary and drag of the warp is neglected in comparison with the drag of the body: $$y=\frac{1}{W_r}\{\sqrt{{D_n^2}+{(W_n+W_rL)^2}}-\sqrt{{D_n^2+W_n}^2\}$$ 3. The changes ${\Delta}y$ of the depth of the midwater trawl net caused by changing the warp length or adding a weight ${\Delta}W_n$_n to the net, are given by the following equations: $${\Delta}y{\approx}\frac{W_n+W_{r}L}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}{\Delta}L$$ $${\Delta}y{\approx}\frac{1}{W_r}\{\frac{W_n+W_rL}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}-{\frac{W_n}{\sqrt{D_n^2+W_n^2}}\}{\Delta}W_n$$ 4. A change ${\Delta}y$ of the depth of the midwater trawl net by adding a weight $W_s$ to an arbitrary point of the warp takes an equation of the form $${\Delta}y=\frac{1}{W_r}\{(T_{ur}'-T_{ur})-T_u'-T_u)\}$$ Where $$T_{ur}^l=\sqrt{T_u^2+(W_s+W_{r}L)^2+2T_u(W_s+W_{r}L)sin{\theta}_u$$ $$T_{ur}=\sqrt{T_u^2+(W_{r}L)^2+2T_uW_{r}L\;sin{\theta}_u$$ $$T_{u}^l=\sqrt{T_u^2+W_s^2+2T_uW_{s}\;sin{\theta}_u$$ and $T_u$ represents the tension at the point on the warp, ${\theta}_u$ the angle between the direction of $T_u$ and horizontal axis, $T_u^2$ the tension at that point when a weights $W_s$ adds to the point where $T_u$ is acted on. 5. If otter boards were constructed lighter and adequate weights were added at their bottom to stabilize them, even they were the same shapes as those of bottom trawls, they were definitely applicable to the midwater trawl gears as the result of the experiments. 6. As the results of water tank tests the relationship between net height of H cm velocity of v m/sec, and that between hydrodynamic resistance of R kg and the velocity of a model net as shown in figure 6 are respectively given by $$H=8+\frac{10}{0.4+v}$$ $$R=3+9v^2$$ 7. It was found that the cross-wing type depth control devices were more stable in operation than that of the H-wing type as the results of the experiments at sea. 8. The hydrodynamic resistance of the net gear in midwater trawling is so large, and regarded as nearly the drag, that sweeping depth of the gear was very stable in spite of types of the depth control devices. 9. An area of the horizontal wing of the H-wing type depth control device was $1.2{\times}2.4m^2$. A midwater trawl net of 2 ton hydrodynamic resistance was connected to the devices and towed with the velocity of 2.3 kts. Under these conditions the depth change of about 20m of the trawl net was obtained by controlling an angle or attack of $30^{\circ}$.

  • PDF

Relationship Between the Body Dimension of Sea Eel , Astroconger Myriaster and the Mesh Size of Fishing Gears (붕장어의 어체제원과 어구강목과의 관계)

  • 장충식
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.4
    • /
    • pp.184-188
    • /
    • 1987
  • The author studied to analyse the relationship between the body dimension of sea eel, Astroconger myriaster and the mesh size of fishing gears. The samples were caught by traps and pots during September, 1987 in the Southern Sea of Korea. The results obtained can be summarized as follows: 1. The relationship between total length L, body weight W and diameter D may be expressed as: W=3.58$\times$10 super(-4) L super(3.38) (r=0.99). D=0.07 L-0.59 (r=0.99). W=10.38 D super(2.76) (r=1.00). W=1/2$\times$D super(2).L. 2. The mesh size of traps and the hole diameter of post must be more than 29.2 mm and 18.6 mm, respectively.

  • PDF

Flow Resistance and Modeling Rule of Fishing Nets 3. Establishment of Modeling Rule and its Theoritical Examination (그물어구의 유수저항과 모형수칙 3. 모형수칙의 수립 및 이론적 검토)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.543-549
    • /
    • 1997
  • The problems in the existing modeling rules for fishing nets, especially in the Tauti's rule which had been used most commonly, were investigated and it was found that the rules could not give a good similarity between the prototype and model nets because they din neither analyze the flow resistance of nets accurately nor decide the ratio of flow velocity between the two nets properly. Thus, the modeling rule was newly derived by regarding the nets as holey structures sucking water into their mouth and then filtering water through their meshes as in the previous paper. The similarity conditions obtained, between the two nets distinguished by subscript 1 and 2, are as follows; $$\frac{d_2}{d_1}=\sqrt{\frac{l_2}{l_1}},\;\frac{N_2}{N_1}=(\frac{d_1}{d_2})^{1.5}\frac{L_2}{L_1},\;\varphi_1=\varphi_2,\;\frac{d_{r2}}{d_{r1}}=\sqrt{\frac{L_2{(\rho_{r1}-\rho_{w1})}}{{L_1{(\rho_{r2}-\rho_{w2})}}$$ $$\frac{N_{a2}}{N_{a1}}=\frac{W_{a1}}{W_{a2}}(\frac{L_2}{L_1})^2,\;\nu_1=\nu_2\;and\;\frac{R_2}{R_1}=(\frac{L_2}{L_1})^2$$, where L is the length of nettings, d the diameter of netting twines, 2l the mesh size, $2\varphi$ the angle between two adjacent bars, N the number of meshes at the sides of nettings, $d_r$, the diameter of ropes, $\rho_r$, the specific gravity of ropes, $W_a$ the weight in water of one piece of float or sinker, $N_a$ the number of floats or sinkers, $\nu$ the flow velocity, and R the flow resistance of net. In the case where the model experiments aim at investigating the influence of weight in water of nettings on their shapes in nets subjected to the water flow of very low velocity, however, the following condition is added; $$\frac{\rho_2-\rho_{w2}}{\rho_1-\rho_{w1}}=\frac{d_1}{d_2}$$ where $\rho$ is the specific gravity of netting twines.

  • PDF

A BIOLOGICAL STUDY OF PENAEUS JAPONICUS BATE (보리새우 Penaeus japonicus Bate의 생물학적 연구)

  • PYEN Choong Kyu;RHO Sum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.93-102
    • /
    • 1970
  • 1. On the basis of the samples collected on the eastern coast of Koje-Do from May to September, 1969, studies have been made on the growth and the relationships between the carapace length and the body length, and between the carapace length and the body weight of Penaeus japonicus Bate. 2. The mean carapace length of P. japonicus was 51mm in May, 57mm in June, 47mm in July and 50mm in September respectively. 3. As a result of the present studies two populations of P. japonicus exist in waters around Koje-Do, namely the spring and fall spawning populations. 4. The relationship between the carapace length ($\iota$) and the body length(L) and between the carapace length and the body weight (W) are indicated by the following equations: May $$L=2.6544{\iota}+3.1258$$ $$W=1.892{\iota}^{1.9844}$$ June $$L=2.8659{\iota}+2.1796$$ $$W=1.082{\iota}^{2.4323}$$ July $$L=2.5840{\iota}+3.3090$$ $$W=1.290{\iota}^{2.3094}$$ September $$L=2.4234{\iota}+4.5775$$ $$W=1.599{\iota}^{2.1857}$$ 5. With regard to the relationships between the carapace length and the body length and between the carapace length and the body weight there is no significant difference between the populations spawning in June and September. 6. The relationships between the carapace length ($\iota$) and the body length (L) and between the carapace length and the body weight (W) for the samples cultured at three different localities are indicated by the following equations: Koje-do $$L=3.7738{\iota}+0.0805\;(r=0.934)$$ $$W=0.4690{\iota}^{3.0713}$$ Oma-do $$L=2.993{\iota}+1.6455\;(r=0.990)$$ $$W=0.6328{\iota}^{2.6579}$$ Kumdang-do $$L=3.2749{\iota}+0.9055\;(r=0.983)$$ $$W=0.5768{\iota}^{2.8076}$$ 7. During the larval stages the relationship between the body length (L) and the rearing day (D) is indicated by the following equations: Zoeal stages (1-3) L=0.1279D+0.2686 (r=0.979) Mysis (1) - Post larva (6) L=0.1697D+0.5634 (r=0.994) Post-larvs (7) - Post larvs (21) L=0.1344D+1.9501 (r=0.978)

  • PDF

Adaptive Control of D.C. Motor Speed Using W.L.S. Algorithm (W.L.S. 알고리즘을 사용한 직유전동기 속도의 적응제어)

  • Park, Jun;Kwon, Key-Ho;Choi, Kye-Keun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.5
    • /
    • pp.31-36
    • /
    • 1983
  • The indirect M.R.A.C. method using the W.L.S. algorithm is applied to the speed control of a D.C. motor on the assumption that the motor is the 1-st order, completely controllable and observable, non-minimum phase plant. By the help of M6809 microprocessor system the experiments are performed with respect to the sinusoidal and square reference input. The results show that the speed of a D.C. motor is well controlled by the indirect M.R.A.C. method using W.L.S, algorithm, and that the W.L.S. algorithm is quite suitable to the time-varying plant.

  • PDF

NOTES ON CARLESON TYPE MEASURES ON BOUNDED SYMMETRIC DOMAIN

  • Choi, Ki-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.65-74
    • /
    • 2007
  • Suppose that $\mu$ is a finite positive Borel measure on bounded symmetric domain $\Omega{\subset}\mathbb{C}^n\;and\;\nu$ is the Euclidean volume measure such that $\nu(\Omega)=1$. Suppose 1 < p < $\infty$ and r > 0. In this paper, we will show that the norms $sup\{\int_\Omega{\mid}k_z(w)\mid^2d\mu(w)\;:\;z\in\Omega\}$, $sup\{\int_\Omega{\mid}h(w)\mid^pd\mu(w)/\int_\Omega{\mid}h(w)^pd\nu(w)\;:\;h{\in}L_a^p(\Omega,d\nu),\;h\neq0\}$ and $$sup\{\frac{\mu(E(z,r))}{\nu(E(z,r))}\;:\;z\in\Omega\}$$ are are all equivalent. We will also show that the inclusion mapping $ip\;:\;L_a^p(\Omega,d\nu){\rightarrow}L^p(\Omega,d\mu)$ is compact if and only if lim $w\rightarrow\partial\Omega\frac{\mu(E(w,r))}{\nu(E(w,r))}=0$.

Age and Growth of the Yellow Goosefish, Lophius litulon (한국근해 황아귀, Lophius litulon의 연령과 성장)

  • CHA Byung-Yul;PARK Yeong-Chull;HUH Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.529-534
    • /
    • 1998
  • Age and growth of the yellow goosefish, Lophius litulon, were studied using samples collected from the southwestern waters of Korea. Vertebrae of the fish had relatively clear annuli on their surface. The opaque zone of vertebrae was formed once a year between March and April. The oldest fish observed in this study was 8 years old for females and 5 years old for males. The relationship between the radius (R) of vertebral centrum and total length (L) was as follows: L=12.7+4.8R for females and L=9.8+5.6R for males. The relationship between total length and body weight (W) was as follows : $W=0.0089L^{3.0311}$ for females and $W=0.0329L^{2.7752}$ for males. Growth in length of the fish was expressed by the von Bertalanffy's equation as $L_t=127.60(1-e^{-0.1228(t+0.3851)})$ for females and $L_t=82.23(1-e^{-0.1832(t+0.6431)})$ for males.

  • PDF

WEIGHTED VECTOR-VALUED BOUNDS FOR A CLASS OF MULTILINEAR SINGULAR INTEGRAL OPERATORS AND APPLICATIONS

  • Chen, Jiecheng;Hu, Guoen
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.671-694
    • /
    • 2018
  • In this paper, we investigate the weighted vector-valued bounds for a class of multilinear singular integral operators, and its commutators, from $L^{p_1}(l^{q_1};\;{\mathbb{R}}^n,\;w_1){\times}{\cdots}{\times}L^{p_m}(l^{q_m};\;{\mathbb{R}}^n,\;w_m)$ to $L^p(l^q;\;{\mathbb{R}}^n,\;{\nu}_{\vec{w}})$, with $p_1,{\cdots},p_m$, $q_1,{\cdots},q_m{\in}(1,\;{\infty})$, $1/p=1/p_1+{\cdots}+1/p_m$, $1/q=1/q_1+{\cdots}+1/q_m$ and ${\vec{w}}=(w_1,{\cdots},w_m)$ a multiple $A_{\vec{P}}$ weights. Our argument also leads to the weighted weak type endpoint estimates for the commutators. As applications, we obtain some new weighted estimates for the $Calder{\acute{o}}n$ commutator.

TOEPLITZ TYPE OPERATOR IN ℂn

  • Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.697-705
    • /
    • 2014
  • For a complex measure ${\mu}$ on B and $f{\in}L^2_a(B)$, the Toeplitz operator $T_{\mu}$ on $L^2_a(B,dv)$ with symbol ${\mu}$ is formally defined by $T_{\mu}(f)(w)=\int_{B}f(w)\bar{K(z,w)}d{\mu}(w)$. We will investigate properties of the Toeplitz operator $T_{\mu}$ with symbol ${\mu}$. We define the Toeplitz type operator $T^r_{\psi}$ with symbol ${\psi}$, $$T^r_{\psi}f(z)=c_r\int_{B}\frac{(1-{\parallel}w{\parallel}^2)^r}{(1-{\langle}z,w{\rangle})^{n+r+1}}{\psi}(w)f(w)d{\nu}(w)$$. We will also investigate properties of the Toeplitz type operator with symbol ${\psi}$.

Relationship Between Lodging-Related Characteristics and Field Lodging in Rice (벼 도복 관련형질과 포장도복과의 관계)

  • 임준택;권병선;정병관
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.4
    • /
    • pp.319-323
    • /
    • 1991
  • To determine how closely related to field lodging for several characters affecting the field lodging for several characters affecting field lodging, and to obtain the basic information for selection of lodging resistance genotype, an experiment was conducted with 10 varieties from May to Oct., 1990 at the experimental field in Sunchon Xational University. Culm length, dry weight per unit culm length (W/1), bending moment per unit culm diameter (W1/d), lodging index (L), bending load ratio (W1/P), and index of critical lodging load(W$_{s}$$^{2}$/1$^4$) were the most closely related characters to field lodging. Culm length showed highly significant positive correlation coefficient with field lodging(r=0.7607), but it may be undesirable to judge lodging resistance of genotype by culm length itself without consideration of culm stiffness. Considering the difficulty and time-consuming to measure the character, clum length, W/1, W1/d, and W$_{s}$$^{2}$/1$^4$ were easy to measure and hence would be the most useful variables to judge the lodging resistance of genotype. Culm diameter, cross sectional area of culm, thickness of culm wall, and the second inertia moment of cross section of culm were not correlated with field lodging at all. Breaking strength of culm showed significantly negative correlation coefficient (r=-0.3986) with field lodging.ing.

  • PDF