• Title/Summary/Keyword: W/O/W multiple emulsion

Search Result 26, Processing Time 0.02 seconds

Effect of Surfactant Micelles on Oxidation in W/O/W Multiple Emulsion (Surfactant micelle이 W/O/W multiple emulsion의 산화에 미치는 영향)

  • Cha, Woen-Seup;Cho, Young-Je
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1611-1616
    • /
    • 2010
  • The purpose of this research was to determine the effect of surfactant micelles on lipid oxidation in W/O/W multiple emulsions. The content of ferric irons and hydroperoxide in the continuous phase in W/O/W multiple emulsions was measured as a function of Brij micelle. The concentration of ferric iron and hydroperoxide in the continuous phase increased with increased storage time (1~6 days). Lipid oxidation rates, as determined by the formation of lipid hydroperoxides, TBARs and headspace hexanal, in the W/O/W multiple emulsions containing ferric iron decreased when 3% surfactant micelles were exceeded. These results indicate that excess surfactant micelles could alter the physical location and prooxidant activity of iron in W/O/W multiple emulsions.

Studies on the Development of a Microbial Cryoprotectant Formulation Using a W/O/W Multiple Emulsion System

  • Bae, Eun-Kyung;Cho, Young-Hee;Park, Ji-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.673-679
    • /
    • 2004
  • A microbial cryoprotectant formulation using a W/O/W multiple emulsion system was developed. The psychrotolerant microorganism, B4, isolated from soil in South Korea, was observed by the drop freezing method, in which the microorganism sample inhibited ice nucleation activity. The antifreeze activity was eliminated when the microorganism sample was treated with protease, indicating that the antifreeze activity was due to the presence of antifreeze protein. The result of the l6S rDNA sequencing indicated the B4 strain was most closely related to a species of the genus Bacillus. Culture broth of B4 strain (Bacillus sp.) and rapeseed oil containing 1 % polyglycerine polyricinolate (PGPR) were used as core and wall material, respectively. The most stable W/O emulsion was prepared at a core/oil ratio of 1:2. The highest W/O/W emulsion stability was achieved when the primary emulsion to external aqueous phase containing 0.5% caster oil polyoxyethylene ether $(COG25^{TM})$ ratio was 1:1. Microcrystalline cellulose showed better W/O/W emulsion stability than other polymer types. The viability of cells in a W/O/W emulsion was higher than free cells during storage at $37^\circ{C}$. An acidic pH and UV exposure decreased the viability of free cells, but cells in W/O/W emulsion were more stable under these conditions.

Development of W/O/W Multiple Emulsion Formulation Containing Burkholderia gladioli

  • KIM, HWA-JIN;CHO, YOUNG-HEE;BAE, EUN-KYUNG;SHIN, TAEK-SU;CHOI, SUNG-WON;CHOI, KEE-HYUN;PARK, JI-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • W/O/W (water-in-oil-in-water) type multiple emulsion was applied to improve the storage stability of an antagonistic microorganism, Burkholderia gladioli. Encapsulation of microorganism into a W/O/W emulsion was conducted by using a two-step emulsification method. W/O/W emulsion was prepared by the incorporation of B. gladioli into rapeseed oil and the addition of polyglycerin polyriconolate (PGPR) and castor oil polyoxyethylene (COG 25) as the primary and secondary emulsifier, respectively. Microcrystalline cellulose was used as an emulsion stabilizer. To evaluate the usefulness of W/O/W emulsion formulation as a microbial pesticide for controlling the bacterial wilt pathogen (Ralstonia solanacearum), the storage stability and antagonistic activity of emulsion formulation were tested in vitro. The storage stability test revealed that the viability of formulated cells in emulsion was higher than that of unformulated cells in culture broth. At $4^{\circ}C$, the viabilities of formulated cells and unformulated cells at the end of 20 weeks decreased to about 2 and 5 log cycles, respectively. At $37^{\circ}C$, the viability of formulated cells decreased to only 2 log cycles at the end of storage. On the other hand, the viable cells in culture broth were not detected after 13 weeks. In activity test, formulated cells in emulsion were more effective in inhibiting the growth of pathogen than unformulated cells in culture broth. Unformulated cells completely lost their antagonistic activity during storage under similar conditions. The W/O/W multiple emulsion formulation was shown to be useful as the novel liquid formulation for biological control.

A Study of Waterproofing Evaluation and Effect of UV Protection (UVB/UVA) of Multiple Emulsion Sunblock Cream using Sensory Engeeneering Science (감성공학을 적용한 다중에멀젼 선블록크림의 자외선차단(UVA/B) 효과와 내수성 평가 연구)

  • Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1517-1527
    • /
    • 2020
  • This study is about the UV protection effect and water resistance of a multiple emulsion (W/O/W) sunblock cream applied with emotional engineering and reports an actual industrial case. Multiple emulsion system of sunblock cream has the characteristics of changing to a W/O type that is soft and moist when applied, and has excellent water resistance after absorption. Multiple emulsion cream is a highly functional sunblock cream that has both moisture and water resistance. It is a stable milky white cream with a viscosity of 36,000 cps. The organic sunscreen used for the sunscreen was ethylhexylmethoxycinnamate and bisethylhexyloxyphenolmethoxyphenyltriazine. Hexagonal zinc oxide and titanium dioxide that block both UVB and UVA were used. As a result of measuring the UV protection effect by the in-vitro method, the UV protection effect (SPF) is 78.9 for multiple emulsion cream, 76.7 for W/O cream, and 71.3 for O/W cream. It was found that the blocking effect was different. This obtained the highest effect value in the multiple emulsion. As a clinical (in-vivo) result of the UV protection effect, the SPF value representing the UV protection effect of the sunblock cream developed with a multiple emulsion system was 85.7, and the PA-value that blocks the UVA area was 26.5, and ++++. It was found that it has a corresponding high blocking effect. As a result of the water resistance test, the W/O/W formulation had a high waterproofing resistance of 93.8% even after 4 hours, W/O had 75.4%, and O/W had a low water resistance of 25.3%. In the results of the HUT test, it was found in the order of multiple emulsion sun block cream > hydrophilic cream > lipophilic cream. Based on the research results of this multiple emulsion, it is expected to be highly active as a sunblock cream dedicated to outdoor activities by improving the feeling of use, UV protection index, and water resistance. Therefore, in this study, a multiple emulsion system of sunblock cream is developed and has a characteristic that changes to a W/O type that has a soft and moist feeling when applied, and has excellent water resistance after absorption.

THE STUDY ON STABLE EMULSION SYSTEM AND SELECTIVE ADDITION OF ACTIVE INGREDIENT IN W/O/W ONE STEP MULTIPLE EMULSION

  • Kim, Se-gie;Park, Hee-nam;Kim, Tae-kyoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.96-104
    • /
    • 1998
  • It was possible to produce W/O/W one step multiple emulsion on the system which satisfied following conditions. 1. 1-5% of hydrophilic liquid surfactant over HLB20 and lipophilic liquid surfactant which has HLB 3∼5 2. Non wax copolymers as oil thickener 3. More than 0.5% of carbomer as aqueous thickener 4. The manufacturing process which neutralize the dispersed carbomer (2.0% in water), after emulsifying. For the selective addition into inner and outer aqueous phase, we melted the glucose in water before emulsifying. Using an Anthrone analysis method, we analyzed the encapsulation yield of glucose in inner water phase. It was possible to raise the water encapsulation yield of the multiple emulsion through the following conditions. 1. Using of anionic hydrophilic surfactant(HLB 40) and lipophilic surfactant (HLB 3∼5) 2. Controlling the ratio of hydrophilic surfactant and lipophilic surfactant 3. Strengthening interface with increase of non wax oil thickener. When the separated adding process of glucose was adopted, approximately 85% of glucose was added selectively within inner aqueous phase.

  • PDF

A Study on Preparation of Water in Oil in Water (W1/O/W2) Emulsion Containing Titrated Extract of Centella asiatica (센텔라 아시아티카 정량추출물을 함유한 Water in Oil in Water (W1/O/W2) 에멀젼 제조에 관한 연구)

  • Seo, Dong Hoan;Lee, Hong Seon;Yoon, Jong Hyuk;Kim, Youn Joon;Byun, Sang Yo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.303-313
    • /
    • 2015
  • Titrated extract of Centella asiatica (TECA), which is poorly soluble in water is well known for wound healing and anti wrinkle agent. This study was conducted to find the optimum condition for the preparation of water in oil in water ($W_1/O/W_2$) emulsion containing TECA. Solubility of TECA were measured by UV spectrophotometer. 2.55 g of TECA was dissolved in solution composed of dipropylene glycol (40.0 g), ethanol (20.0 g), and water (10.0 g). Factors affecting stability of the emulsions ($W_1/O$, $W_1/O/W_2$) was investigated. The optimum conditions for the preparation of $W_1/O$ emulsion was composed of dipropylene glycol : ethanol : water : TECA in a weight ratio of 40.0 : 20.0 : 10.0 : 2.5 for water phase and squalane : cetyl PEG/PPG-10/1 dimethicone : cetearyl alcohol in a weight ratio of 22.5 : 4.0 : 2.5 for oil phase. The optimum conditions for the preparation of $W_1/O/W_2$ multiple emulsion was composed of water : $W_1/O$ emulsion : polysorbate 80 : carbomer : triethanolamine in a weight ratio of 55.8 : 40.0 : 4.0 : 0.1 : 0.1.

A Study on the Formation of a W/O/W Multiple Emulsion by Polyglyceryl-10 Stearate (Polyglyceryl-10 Stearate를 이용한 W/O/W 다중 에멀젼의 제조에 관한 연구)

  • Yoo, Jung Min;Choi, Se Bum;Kim, Kyung Min;Kim, Seong Ho;Lee, Chung Hee;Lee, Sang Gil;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.237-246
    • /
    • 2014
  • Multiple emulsions, called multiphase emulsions, include water-in-oil-in-water (W/O/W) type and oil-in-water-in-oil (O/W/O) type emulsions. In cosmetic industry, they are used to stabilize active ingredients but the applicability of the multiple emulsions is limited because of low stability and difficulty of manufacturing. In this study, we investigated a two-step emulsification process for a W/O/W type emulsion. We also investigated the change of stability using different emulsifiers and oil polarity. The results suggested that polyglyceryl-10 stearate, as a main emulsifier, played an important role in the stability and the formation of the multiple emulsions.

Moisturizing Effect and Durability of Sun Protection Factor (UVA/B) Activity with Multiple Emulsion (W/O/W) System (멀티플 에멀전(W/O/W) 시스템을 이용한 자외선차단성능(UVA/B)의 내수성과 보습효과)

  • Lee, Myoung-Hee;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.339-347
    • /
    • 2015
  • This study is to evaluate moisturizing effect and durability of UV A/B blocking activity with multiple (W/O/W) emulsion system. Most of the sun protective products come to be hot issue having both high SPF and long-lasting activity as using special products when is going out, mountain climbing and sports. Also, many consumers prefer the products which have the excellent waterproofing activity of sun care cosmetics as well as the non-sticky feeling that carried out the study of the sensorial science and texture preference. Therefore, development of the specific formulation using this multiple (W/O/W) emulsion technology, it has O/W type hydro skin feel having soft and moist texture when it is treated on the skin. Finally, this formulation is instantly changed to W/O type feel after adsorbed into the skin. The purpose of this study is to get high SPF lasting effect having high water resistance tactivity with high functional multiple (W/O/W) emulsion cream. We used major ingredients, UV-B absorbers were selected with ethylhexyl methoxycinnamate, isoamyl-p-methoxycinnamate, ethylhexylsalicylate, and octocrylene, UV-A absorbers were selected with butylmethoxydibenzoylmethane, bis-ethylhexyloxyphenol methoxy phenyltriazine. SPF effect of O/W type cream was 34.1. SPF effect of W/O/W type cream was 40.6 (increased about 19%). Water resistance effect after 4 hours, SPF effect of O/W type cream was 3.6 (quickly drop down). SPF effect of W/O/W type cream having 81.0 % waterproofing effect was 32.7 (decreased about SPF 7.9). Moisturizing effect of O/W cream at first was superior comparing multiple emulsion. But after 3 hours quickly was drop-down. Moisturizing effect of multiple emulsion was high comparing O/W type and other sun block creams after 4 hours was constantly maintaining water-content.

Three-ply Walled W/O/W Microcapsules Containing Furosemide and Reserpine (W/O/W 삼층막(三層膜) Microcapsules에 관(關)한 연구(硏究))

  • Lee, Chi-Ho;Shin, Young-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.14 no.2
    • /
    • pp.62-69
    • /
    • 1984
  • Three-ply walled microcapsules containing furosemide and reserpine were prepared from multiple emulsion, and the the appearance of multiple emulsion, the particle size distribution and the drug contents of microcapsules were studied. The microcapsule consisted of alternating three layer of acacia/ethyl cellulose/acacia, and the surface of microcapsules was not porous but wrinkles and had relatively elaborate structure and the particle size range is $4{\mu}m$ to $64{\mu}m$.

  • PDF

The effect of osmotic pressure in W/O/W multiple emulsion (다상 에멀전 형성에 있어 삼투 현상이 미치는 영향)

  • 신중진;이근수;강기춘;표형배
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.139-148
    • /
    • 2000
  • The osmotic pressure is a one of the most important factor affecting stabilization of multiple emulsion in a law hours after experiment. To understand and decrease osmotic pressure between Wl phase and W2 phase, a kinds of humectants were introduced in outer water phase. As a result, Betaine and Glucose had an excellent effect reducing osmotic pressure and NaCl made W/O/W emulsion more stable than MgSO4 did when introduced in inner water phase.

  • PDF