• 제목/요약/키워드: W/Cu FGM

검색결과 6건 처리시간 0.02초

Fabrication of diamond/W-Cu functionally graded material by microwave sintering

  • Wei, Chenlong;Cheng, Jigui;Zhang, Mei;Zhou, Rui;Wei, Bangzheng;Yu, Xinxi;Luo, Laima;Chen, Pengqi
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.975-983
    • /
    • 2022
  • A four-layered W/Cu functionally graded material (FGM) (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W60% + Cu40%, wt.% fraction) and a four-layered diamond/W-Cu FGM (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W55% + Cu40% + diamond5%, wt.% fraction) were fabricated by microwave sintering. The thermal conductivity and thermal shock resistance of diamond/W-Cu FGM and W-Cu FGM were investigated. The morphologies of the diamond particles and different FGMs were analyzed using AFM, SEM, EDS, and TEM. The results show that a 200 nm rough tungsten coating was formed on the surface of the diamond. The density of the tungsten-coated diamond/W-Cu FGM, obtained by microwave sintering at 1200 ℃ for 30 min, was 94.66%. The thermal conductivity of the fourlayered diamond/W-Cu FGM was 220 W·m-1·K-1, which is higher than that of the four-layered W/Cu FGM (209 W m-1 K-1). This indicates that adding an appropriate amount of tungsten-coated diamond to the high Cu layer W/Cu FGM improves the thermal conductivity of the composite. The diamond/W-Cu FGM sintered at 1200 ℃ for 10 min exhibited better thermal shock resistance than diamond/W-Cu FGM sintered at 1100 ℃ for 10 min.

Continuous W-Cu functional gradient material from pure W to W-Cu layer prepared by a modified sedimentation method

  • Bangzheng Wei;Rui Zhou;Dang Xu;Ruizhi Chen;Xinxi Yu;Pengqi Chen;Jigui Cheng
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4491-4498
    • /
    • 2022
  • The thermal stress between W plasma-facing material (PFM) and Cu heat sink in fusion reactors can be significantly reduced by using a W-Cu functionally graded material (W-Cu FGM) interlayer. However, there is still considerable stress at the joining interface between W and W-Cu FGM in the W/W-Cu FGM/Cu portions. In this work, we fabricate W skeletons with continuous gradients in porosity by a modified sedimentation method. Sintering densification behavior and pore characteristics of the sedimented W skeletons at different sintering temperatures were investigated. After Cu infiltration, the final W-Cu FGM was obtained. The results indicate that the pore size and porosity in the W skeleton decrease gradually with the increase of sintering temperature, but the increase of skeleton sintering temperature does not reduce the gradient range of composition distribution of the final prepared W-Cu FGM. And W-Cu FGM with composition distribution from pure W to W-20.5wt.% Cu layer across the section was successfully obtained. The thickness of the pure W layer is about one-fifth of the whole sample thickness. In addition, the prepared W-Cu FGM has a relative density of 94.5 % and thermal conductivity of 185 W/(m·K). The W-Cu FGM prepared in this work may provide a good solution to alleviate the thermal stress between W PFM and Cu heat sink in the fusion reactors.

방전플라즈마소결법에 의한 W-Cu 연속경사기능재료의 제조와 특성에 관한 연구 (A Study on the Fabrication and Characteristics of Continuous W-Cu FGM by Spark Plasma Sintering)

  • 신철균;강태훈;권영순;김지순;김환태;석명진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.217-217
    • /
    • 2003
  • W-Cu 합금은 우수한 전기적, 열적 특성으로 인하여 열소산재료(Heat sink)로 많이 응용되고 있다. 첨단 전자부품 이외에도 핵융합로의 Diverter가 그 예로서, 내부는 고강도와 고융점의 특성을 요구하는 반면, 외부는 높은 열전도성을 필요로 한다. 그래서 동일한 조성의 일반적인 W-Cu 합금보다 W과 Cu의 조성이 점차적으로 변화하는 경사기능재료(Functionally Graded Materials)가 냉각효율이 클 것으로 기대된다. 현재, W-Cu FGM에 대한 많은 연구가 진행되고 있지만, 그 조성이 연속적으로 변화하는 W-Cu FGM에 대한 연구는 전무한 실정이다 본 연구에서는 방전플라즈마 소결장치(Spark Plasma Sintering System)와 용침고정을 이용하여 연속적인 조성변화를 갖는 W-Cu FGM을 제조하고 그 특성에 관해 분석하고자 하였다. 소결체가 밀도 변화를 갖게 되도록 제작한 특수 경사기능 몰드에 W분말을 장입한 후, 15㎬의 압력하에서 SPS를 이용하여 W소결체를 제조하였다. 제조된 W소결체는 수평관상로에서 수소분위기 하에 Cu 용침을 실시하여 W-Cu FGM을 제조하였다 SEM을 이용한 각 위치별 조직관찰과 Image Analyzer를 이용한 W과 Cu의 면적비, 그리고 비커스경도계에 의한 경도 측정을 실시하였다. 또 열기계적 분석기를 이용하여 측정된 선팽창률로부터 열팽창계수를 구하였다. 80$0^{\circ}C$에서 ?칭하는 반복적인 싸이클을 통해 열충격시험을 실시하였고, Laser flash method로 열확산계수를 측정하였다.

  • PDF

SPS/용침 공정에 의한 W-Cu연속경사기능재료의 제초와 특성 (Fabrication and Characteristics of Continuous W-Cu FGM by SPS/Infiltration Process)

  • 신철균;석명진;오승탁;김지순;권영순
    • 한국분말재료학회지
    • /
    • 제11권2호
    • /
    • pp.158-164
    • /
    • 2004
  • W-Cu composite has been used for the applications requiring both high strength, good thermal and electrical conductivity. A graded combination of W and Cu will reduce thermal stress concerned with heat conduction, maintaining good thermal conductivity and high mechanical strength. In the present work, an attempt was made to fabricate continuous W-Cu FGM by preparing the graded porous structure of W skeleton using spark plasma sintering (SPS) process followed by infiltrating Cu. The graded porous structure was prepared at 150$0^{\circ}C$ for 60s under pressure of 15MPa by SPS process using a graphite mold with varying crr)ss section in the longitudinal direction. Infiltration of Cu was performed at 115$0^{\circ}C$ for 1 hour under $H_2$. W-Cu composite with graded Cu composition of 14 to 27 wt% was finally prepared. In this process the gradient of composition could be conveniently controlled by varying the gradient of cross sectional area of graphite mold, temperature and pressure.

Tungsten/Copper Functionally Graded Materials : Possible Applications and Processing through the Powder Metallurgy Route

  • Ozer, O.;Missiaen, J.M.;Pascal, C.;Lay, S.;Chaix, J.M.;Mitteau, R.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.83-84
    • /
    • 2006
  • Processing of W-Cu graded materials from attritor-milled W-CuO mixtures is described. The powder reduction steps are investigated by TG and XRD analyses and by microstructural observations (SEM, TEM). Sintering of reduced powder with different compositions is analysed by dilatometry. Sintering behaviour of the graded component processed by co-compaction of a 10/20/30wt%Cu multi-layer material is briefly discussed. Liquid Cu migration is observed and smooths the composition gradient. Perspectives to control this migration are discussed.

  • PDF

Fundamental Aspects of Resistance Sintering under Ultrahigh Pressure Consolidation

  • Zhou, Zhangjian;Kim, Ji-Soon;Yum, Young-Jin
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.19-24
    • /
    • 2012
  • The consolidation results of fine tungsten powders, W-Cu composite and W/Cu FGM by using a novel method combining resistance sintering with ultra high pressure have been reviewed. The densification effects of the consolidation parameters, including pressure, input power and sintering time, have been investigated. The sintering mechanism of this method was quite different from other sintering methods. Particle rearrangement, sliding, distortion and crushing due to the ultra high pressure are the dominant mehanisms at the initial stage, then the dominant sintering mechanisms are transient arc-fused processes controlled by the input power.