• Title/Summary/Keyword: Voting method

Search Result 187, Processing Time 0.02 seconds

Estimation of Distance and Direction for Tracking of the Moving Object

  • Kang, Sung-Kwan;Park, Jong-An
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.557-557
    • /
    • 2000
  • Tracking of the moving object, which is realized by the computer vision, is used for military and industrial fields. It is the application technique with imply complicated processing for understanding the input images. But, in these days, the most moving object tracking algorithms have many difficult problems. A typical problem is the increase of calculation time depending on target number. For this reason, there are many studies to solve real time processing problems and errors for background environmental change. In this paper, we used optical flow which is one of moving object tracking algorithms. It represents vector of the moving object. Optical flow estimation based on the regularization method depends on iteration method but it is very sensitive the noise. We proposed a new method using the Combinatorial Hough Transform (CHT) and Voting Accumulation in order to find optimal constraint lines. Also, we used the logical operation in order to release the operation time. The proposed method can easily and accurately extract the optical flow of moving object area and the moving information. We have simulated the proposed method using the test images. This images are included the noise. Experimental results show that the proposed method get better flow and estimate accurately the moving information.

  • PDF

Lane Detection Based on Inverse Perspective Transformation and Kalman Filter

  • Huang, Yingping;Li, Yangwei;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.643-661
    • /
    • 2018
  • This paper proposes a novel algorithm for lane detection based on inverse perspective transformation and Kalman filter. A simple inverse perspective transformation method is presented to remove perspective effects and generate a top-view image. This method does not need to obtain the internal and external parameters of the camera. The Gaussian kernel function is used to convolute the image to highlight the lane lines, and then an iterative threshold method is used to segment the image. A searching method is applied in the top-view image obtained from the inverse perspective transformation to determine the lane points and their positions. Combining with feature voting mechanism, the detected lane points are fitted as a straight line. Kalman filter is then applied to optimize and track the lane lines and improve the detection robustness. The experimental results show that the proposed method works well in various road conditions and meet the real-time requirements.

Multiple Plane Area Detection Using Self Organizing Map (자기 조직화 지도를 이용한 다중 평면영역 검출)

  • Kim, Jeong-Hyun;Teng, Zhu;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.22-30
    • /
    • 2011
  • Plane detection is very important information for mission-critical of robot in 3D environment. A representative method of plane detection is Hough-transformation. Hough-transformation is robust to noise and makes the accurate plane detection possible. But it demands excessive memory and takes too much processing time. Iterative randomized Hough-transformation has been proposed to overcome these shortcomings. This method doesn't vote all data. It votes only one value of the randomly selected data into the Hough parameter space. This value calculated the value of the parameter of the shape that we want to extract. In Hough parameters space, it is possible to detect accurate plane through detection of repetitive maximum value. A common problem in these methods is that it requires too much computational cost and large number of memory space to find the distribution of mixed multiple planes in parameter space. In this paper, we detect multiple planes only via data sampling using Self Organizing Map method. It does not use conventional methods that include transforming to Hough parameter space, voting and repetitive plane extraction. And it improves the reliability of plane detection through division area searching and planarity evaluation. The proposed method is more accurate and faster than the conventional methods which is demonstrated the experiments in various conditions.

Ensemble learning of Regional Experts (지역 전문가의 앙상블 학습)

  • Lee, Byung-Woo;Yang, Ji-Hoon;Kim, Seon-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.2
    • /
    • pp.135-139
    • /
    • 2009
  • We present a new ensemble learning method that employs the set of region experts, each of which learns to handle a subset of the training data. We split the training data and generate experts for different regions in the feature space. When classifying a data, we apply a weighted voting among the experts that include the data in their region. We used ten datasets to compare the performance of our new ensemble method with that of single classifiers as well as other ensemble methods such as Bagging and Adaboost. We used SMO, Naive Bayes and C4.5 as base learning algorithms. As a result, we found that the performance of our method is comparable to that of Adaboost and Bagging when the base learner is C4.5. In the remaining cases, our method outperformed the benchmark methods.

A Robust Power Transmission Lines Detection Method Based on Probabilistic Estimation of Vanishing Point (확률적인 소실점 추정 기법에 기반한 강인한 송전선 검출 방법)

  • Yoo, Ju Han;Kim, Dong Hwan;Lee, Seok;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • We present a robust power transmission lines detection method based on vanishing point estimation. Vanishing point estimation can be helpful to detect power transmission lines because parallel lines converge on the vanishing point in a projected 2D image. However, it is not easy to estimate the vanishing point correctly in an image with complex background. Thus, we first propose a vanishing point estimation method on power transmission lines by using a probabilistic voting procedure based on intersection points of line segments. In images obtained by our system, power transmission lines are located in a fan-shaped area centered on this estimated vanishing point, and therefore we select the line segments that converge to the estimated vanishing point as candidate line segments for power transmission lines only in this fan-shaped area. Finally, we detect the power transmission lines from these candidate line segments. Experimental results show that the proposed method is robust to noise and efficient to detect power transmission lines.

Object-based Change Detection using Various Pixel-based Change Detection Results and Registration Noise (다양한 화소기반 변화탐지 결과와 등록오차를 이용한 객체기반 변화탐지)

  • Jung, Se Jung;Kim, Tae Heon;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.481-489
    • /
    • 2019
  • Change detection, one of the main applications of multi-temporal satellite images, is an indicator that directly reflects changes in human activity. Change detection can be divided into pixel-based change detection and object-based change detection. Although pixel-based change detection is traditional method which is mostly used because of its simple algorithms and relatively easy quantitative analysis, applying this method in VHR (Very High Resolution) images cause misdetection or noise. Because of this, pixel-based change detection is less utilized in VHR images. In addition, the sensor of acquisition or geographical characteristics bring registration noise even if co-registration is conducted. Registration noise is a barrier that reduces accuracy when extracting spatial information for utilizing VHR images. In this study object-based change detection of VHR images was performed considering registration noise. In this case, object-based change detection results were derived considering various pixel-based change detection methods, and the major voting technique was applied in the process with segmentation image. The final object-based change detection result applied by the proposed method was compared its performance with other results through reference data.

Ground Target Classification Algorithm based on Multi-Sensor Images (다중센서 영상 기반의 지상 표적 분류 알고리즘)

  • Lee, Eun-Young;Gu, Eun-Hye;Lee, Hee-Yul;Cho, Woong-Ho;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.2
    • /
    • pp.195-203
    • /
    • 2012
  • This paper proposes ground target classification algorithm based on decision fusion and feature extraction method using multi-sensor images. The decisions obtained from the individual classifiers are fused by applying a weighted voting method to improve target recognition rate. For classifying the targets belong to the individual sensors images, features robust to scale and rotation are extracted using the difference of brightness of CM images obtained from CCD image and the boundary similarity and the width ratio between the vehicle body and turret of target in FLIR image. Finally, we verity the performance of proposed ground target classification algorithm and feature extraction method by the experimentation.

Classification of Signals Segregated using ICA (ICA로 분리한 신호의 분류)

  • Kim, Seon-Il
    • 전자공학회논문지 IE
    • /
    • v.47 no.4
    • /
    • pp.10-17
    • /
    • 2010
  • There is no general method to find out from signals of the channel outputs of ICA(Independent Component Analysis) which is what you want. Assuming speech signals contaminated with the sound from the muffler of a car, this paper presents the method which shows what you want, It is anticipated that speech signals will show larger correlation coefficients for speech signals than others. Batch, maximum and average method were proposed using 'ah', 'oh', 'woo' vowels whose signals were spoken by the same person who spoke the speech signals and using the same vowels whose signals are by another person. With the correlation coefficients which were calculated for each vowel, voting and summation methods were added. This paper shows what the best is among several methods tried.

Suppressio of mutual interference among vehicular radars by ON-OFF control of pulses (다중차량의 자동 주행 시의 레이터 상호간섭 억제)

  • 최병철;김용철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.62-70
    • /
    • 2000
  • Intelligent vehicles are equipped with radar sensors for collision avoidance. We present a method of suppressing mutual interference among pulse-type radars, where all the radars are standardized. We developed a method of separating the true self-reflection from the false one by controlling the pulse emission of a radar in anorhogonal ON, OFF pattern. Interference signal identified in OFF-intervals is recorded to indicate the positions of the expected ghosts in ON-intervals. PFA and PM are derived for a radar system with I-Q demodulation scheme, where Gaussian noise alone is Rayleigh-distributed and Gaussian noise plus reflected radar pulse are Rician-distributed. The value of the threshold adaptively updated in order to prevent the deterioration of PM. In the experimental result, PFA decreases by an order of 10,000, when compared with the conventional M of N majority voting method.

  • PDF

Rockfall Source Identification Using a Hybrid Gaussian Mixture-Ensemble Machine Learning Model and LiDAR Data

  • Fanos, Ali Mutar;Pradhan, Biswajeet;Mansor, Shattri;Yusoff, Zainuddin Md;Abdullah, Ahmad Fikri bin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.93-115
    • /
    • 2019
  • The availability of high-resolution laser scanning data and advanced machine learning algorithms has enabled an accurate potential rockfall source identification. However, the presence of other mass movements, such as landslides within the same region of interest, poses additional challenges to this task. Thus, this research presents a method based on an integration of Gaussian mixture model (GMM) and ensemble artificial neural network (bagging ANN [BANN]) for automatic detection of potential rockfall sources at Kinta Valley area, Malaysia. The GMM was utilised to determine slope angle thresholds of various geomorphological units. Different algorithms(ANN, support vector machine [SVM] and k nearest neighbour [kNN]) were individually tested with various ensemble models (bagging, voting and boosting). Grid search method was adopted to optimise the hyperparameters of the investigated base models. The proposed model achieves excellent results with success and prediction accuracies at 95% and 94%, respectively. In addition, this technique has achieved excellent accuracies (ROC = 95%) over other methods used. Moreover, the proposed model has achieved the optimal prediction accuracies (92%) on the basis of testing data, thereby indicating that the model can be generalised and replicated in different regions, and the proposed method can be applied to various landslide studies.