• Title/Summary/Keyword: Voting Map

Search Result 12, Processing Time 0.028 seconds

Ensemble Deep Network for Dense Vehicle Detection in Large Image

  • Yu, Jae-Hyoung;Han, Youngjoon;Kim, JongKuk;Hahn, Hernsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • This paper has proposed an algorithm that detecting for dense small vehicle in large image efficiently. It is consisted of two Ensemble Deep-Learning Network algorithms based on Coarse to Fine method. The system can detect vehicle exactly on selected sub image. In the Coarse step, it can make Voting Space using the result of various Deep-Learning Network individually. To select sub-region, it makes Voting Map by to combine each Voting Space. In the Fine step, the sub-region selected in the Coarse step is transferred to final Deep-Learning Network. The sub-region can be defined by using dynamic windows. In this paper, pre-defined mapping table has used to define dynamic windows for perspective road image. Identity judgment of vehicle moving on each sub-region is determined by closest center point of bottom of the detected vehicle's box information. And it is tracked by vehicle's box information on the continuous images. The proposed algorithm has evaluated for performance of detection and cost in real time using day and night images captured by CCTV on the road.

UAV-based bridge crack discovery via deep learning and tensor voting

  • Xiong Peng;Bingxu Duan;Kun Zhou;Xingu Zhong;Qianxi Li;Chao Zhao
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.105-118
    • /
    • 2024
  • In order to realize tiny bridge crack discovery by UAV-based machine vision, a novel method combining deep learning and tensor voting is proposed. Firstly, the grid images of crack are detected and descripted based on SE-ResNet50 to generate feature points. Then, the probability significance map of crack image is calculated by tensor voting with feature points, which can define the direction and region of crack. Further, the crack detection anchor box is formed by non-maximum suppression from the probability significance map, which can improve the robustness of tiny crack detection. Finally, a case study is carried out to demonstrate the effectiveness of the proposed method in the Xiangjiang-River bridge inspection. Compared with the original tensor voting algorithm, the proposed method has higher accuracy in the situation of only 1-2 pixels width crack and the existence of edge blur, crack discontinuity, which is suitable for UAV-based bridge crack discovery.

E-voting Implementation in Egypt

  • Eraky, Ahmed
    • Journal of Contemporary Eastern Asia
    • /
    • v.16 no.1
    • /
    • pp.48-68
    • /
    • 2017
  • Manual elections processes in Egypt have several negative effects; that mainly leads to political corruption due to the lack of transparency. These issues negatively influence citizen's participation in the political life; while electronic voting systems aim to increase efficiency, transparency, and reduce the cost comparing to the manual voting. The main research objectives are, finding the successful factors that positively affects E-voting implementation in Egypt, in addition of finding out the reasons that keep Egyptian government far from applying E-voting, and to come up with the road map that Egyptian government has to take into consideration to successfully implement E-voting systems. The findings of the study suggest that there are seven independent variables affecting e-voting implementation which are; leadership, government willingness, legal framework, technical quality, awareness, citizen's trust in government and IT literacy. Technology-Organization-Environment (TOE) theory was used to provide an analytical framework for the study. A quantitative approach (i.e., survey questionnaire) strategy was used to collect data. A random sampling method was used to select the participants for the survey, whom are targeted voters in Egypt and have access to the internet, since the questionnaire was distributed online and the data is analyzed using regression analysis. Practical implications of this study will lead for more citizen participation in the political life due to the transparency that E-voting system will create, in addition to reduce the political corruption.

Text Detection based on Edge Enhanced Contrast Extremal Region and Tensor Voting in Natural Scene Images

  • Pham, Van Khien;Kim, Soo-Hyung;Yang, Hyung-Jeong;Lee, Guee-Sang
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.32-40
    • /
    • 2017
  • In this paper, a robust text detection method based on edge enhanced contrasting extremal region (CER) is proposed using stroke width transform (SWT) and tensor voting. First, the edge enhanced CER extracts a number of covariant regions, which is a stable connected component from input images. Next, SWT is created by the distance map, which is used to eliminate non-text regions. Then, these candidate text regions are verified based on tensor voting, which uses the input center point in the previous step to compute curve salience values. Finally, the connected component grouping is applied to a cluster closed to characters. The proposed method is evaluated with the ICDAR2003 and ICDAR2013 text detection competition datasets and the experiment results show high accuracy compared to previous methods.

Natural Scene Text Binarization using Tensor Voting and Markov Random Field (텐서보팅과 마르코프 랜덤 필드를 이용한 자연 영상의 텍스트 이진화)

  • Choi, Hyun Su;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.18-23
    • /
    • 2015
  • In this paper, we propose a method for detecting the number of clusters. This method can improve the performance of a gaussian mixture model function in conventional markov random field method by using the tensor voting. The key point of the proposed method is that extracts the number of the center through the continuity of saliency map of the input data of the tensor voting token. At first, we separate the foreground and background region candidate in a given natural images. After that, we extract the appropriate cluster number for each separate candidate regions by applying the tensor voting. We can make accurate modeling a gaussian mixture model by using a detected number of cluster. We can return the result of natural binary text image by calculating the unary term and the pairwise term of markov random field. After the experiment, we can confirm that the proposed method returns the optimal cluster number and text binarization results are improved.

VotingRank: A Case Study of e-Commerce Recommender Application Using MapReduce

  • Ren, Jian-Ji;Lee, Jae-Kee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.834-837
    • /
    • 2009
  • There is a growing need for ad-hoc analysis of extremely large data sets, especially at e-Commerce companies which depend on recommender application. Nowadays, as the number of e-Commerce web pages grow to a tremendous proportion; vertical recommender services can help customers to find what they need. Recommender application is one of the reasons for e-Commerce success in today's world. Compared with general e-Commerce recommender application, obviously, general e-Commerce recommender application's processing scope is greatly narrowed down. MapReduce is emerging as an important programming model for large-scale data-parallel applications such as web indexing, data mining, and scientific simulation. The objective of this paper is to explore MapReduce framework for the e-Commerce recommender application on major general and dedicated link analysis for e-Commerce recommender application, and thus the responding time has been decreased and the recommender application's accuracy has been improved.

Background Prior-based Salient Object Detection via Adaptive Figure-Ground Classification

  • Zhou, Jingbo;Zhai, Jiyou;Ren, Yongfeng;Lu, Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1264-1286
    • /
    • 2018
  • In this paper, a novel background prior-based salient object detection framework is proposed to deal with images those are more complicated. We take the superpixels located in four borders into consideration and exploit a mechanism based on image boundary information to remove the foreground noises, which are used to form the background prior. Afterward, an initial foreground prior is obtained by selecting superpixels that are the most dissimilar to the background prior. To determine the regions of foreground and background based on the prior of them, a threshold is needed in this process. According to a fixed threshold, the remaining superpixels are iteratively assigned based on their proximity to the foreground or background prior. As the threshold changes, different foreground priors generate multiple different partitions that are assigned a likelihood of being foreground. Last, all segments are combined into a saliency map based on the idea of similarity voting. Experiments on five benchmark databases demonstrate the proposed method performs well when it compares with the state-of-the-art methods in terms of accuracy and robustness.

Multiple Plane Area Detection Using Self Organizing Map (자기 조직화 지도를 이용한 다중 평면영역 검출)

  • Kim, Jeong-Hyun;Teng, Zhu;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.22-30
    • /
    • 2011
  • Plane detection is very important information for mission-critical of robot in 3D environment. A representative method of plane detection is Hough-transformation. Hough-transformation is robust to noise and makes the accurate plane detection possible. But it demands excessive memory and takes too much processing time. Iterative randomized Hough-transformation has been proposed to overcome these shortcomings. This method doesn't vote all data. It votes only one value of the randomly selected data into the Hough parameter space. This value calculated the value of the parameter of the shape that we want to extract. In Hough parameters space, it is possible to detect accurate plane through detection of repetitive maximum value. A common problem in these methods is that it requires too much computational cost and large number of memory space to find the distribution of mixed multiple planes in parameter space. In this paper, we detect multiple planes only via data sampling using Self Organizing Map method. It does not use conventional methods that include transforming to Hough parameter space, voting and repetitive plane extraction. And it improves the reliability of plane detection through division area searching and planarity evaluation. The proposed method is more accurate and faster than the conventional methods which is demonstrated the experiments in various conditions.

A Study on the Ecological Aesthetic Landscape Assessment Technique for a Urban Forest : In a case of the "Inwang Mt.", Seoul (도시환경림의 생태미학적 경관분석기법에 관한 연구-인왕산을 사례지역으로-)

  • 김성균
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.24 no.1
    • /
    • pp.97-108
    • /
    • 1996
  • The purposes of this study were to develop a forest landscape assessment technique for landscape ecological planting and urban forest management. The study was conducted by 4 steps in a case of "Inwang Mt.", Seoul. The process and results of the study are as follows : 1. The vegetation types of the Inwang Mt. were identified. 2. The 19 visual types from the vegetation types were classified. 3. The visual preference for the classified types was evaluated. Sorbus alnifolia community, Sorbus alnifolia community-Robinia pseudoacacia group, etc. were highly preferred. 4. A voting distribution graph of each visual type and an ecological -visual assessment map were developed. Finally the applications of the study were suggested.suggested.

  • PDF

Self-localization of Mobile Robots by the Detection and Recognition of Landmarks (인공표식과 자연표식을 결합한 강인한 자기위치추정)

  • 권인소;장기정;김성호;이왕헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.306-311
    • /
    • 2003
  • This paper presents a novel localization paradigm for mobile robots based on artificial and natural landmarks. A model-based object recognition method detects natural landmarks and conducts the global and topological localization. In addition, a metric localization method using artificial landmarks is fused to complement the deficiency of topology map and guide to action behavior. The recognition algorithm uses a modified local Zernike moments and a probabilistic voting method for the robust detection of objects in cluttered indoor environments. An artificial landmark is designed to have a three-dimensional multi-colored structure and the projection distortion of the structure encodes the distance and viewing direction of the robot. We demonstrate the feasibility of the proposed system through real world experiments using a mobile robot, KASIRI-III.

  • PDF