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Abstract 
There is a growing need for ad-hoc analysis of extremely large data sets, especially at e-Commerce companies which 

depend on recommender application. Nowadays, as the number of e-Commerce web pages grow to a tremendous 
proportion; vertical recommender services can help customers to find what they need. Recommender application is one of 
the reasons for e-Commerce success in today’s world. Compared with general e-Commerce recommender application, 
obviously, general e-Commerce recommender application’s processing scope is greatly narrowed down. MapReduce is 
emerging as an important programming model for large-scale data-parallel applications such as web indexing, data mining, 
and scientific simulation. The objective of this paper is to explore MapReduce framework for the e-Commerce recommender 
application on major general and dedicated link analysis for e-Commerce recommender application, and thus the responding 
time has been decreased and the recommender application’s accuracy has been improved. 

 
 
1. Introduction 

In recent years, recommender application has become one 
of the most popular tools to retrieve information from the 
web. 

Since the number of e-Commerce web pages has also 
been increasing rapidly, it has become almost impossible to 
obtain information from the e-Commerce site without using 
recommender application. Users desire to define their 
preferences and customize the purchase information within 
the e-Commerce environment according to their individual 
needs. The site which does not have the recommender 
application services has to employ the search engines. The 
result from search engines is flat, and users have to go 
through the results to find what they want. It is time-
consuming to locate their interesting products with the low 
relevance. In most situations, they are not able to evaluate all 
available alternatives and typically follow a two-step model 
to fulfill their purchasing processes. In the first step, they 
identify a subset of the available alternatives by choosing 
from a vast range of products, and, in a second step, they 
perform relative comparisons among these to arrive at their 
final decisions. Most people refer only to their interesting 
products. Therefore, it is imperative to make users browse 
their interesting products easier; employing the recommender 
application as a service. 

Many recommender algorithms, such as collaborative 
filtering algorithms[1] and content-based filtering 
algorithms[2] have been designed for better recommender 
application. However, all these algorithms are based on 
general recommender application; which they cannot satisfy 
our users requirements. 

The performance of intelligent recommender application 
is mainly evaluated by its accuracy and speed. The tolerable 
time of users waiting in front of the browser is generally 
limited, so the speed of the system responding to the users 

should be fast. On the other hand, users are usually anxious 
to receive the accurate information, so the accuracy of 
system should be high. The trends on data growth and 
processor speed improvement suggest that some form of 
parallelization is required to process the data. First, there are 
over 100.1 million websites operated as of March 2008[9]. 
The amount of data is growing at an exponential rate. In the 
e-Commerce world, the data is also growing at an amazing 
rate. Second, uniprocessor speed has stopped exponential 
growth since roughly 2002[13]. At the same time, traditional 
data processing algorithms promise to deliver efficient 
solutions to many of the problems arising from the 
interactions of consumers with the increasing volume of 
Internet applications. An efficient solution requires: 1) the 
distribution of the data to several computational nodes, 2) 
parallel accumulation of local data, and 3) aggregation of the 
results over all nodes. The researcher must manage the 
distribution to optimize bandwidth utilization, monitor the 
parallel accumulation of frequencies to handle straggling 
process and memory overruns, and synchronize the nodes 
and optimize bandwidth utilization for the aggregation of the 
result. 

Recently, Jeffrey Dean and Sanjay Ghemawat in Google 
Corporation proposed a parallel framework, MapReduce[3], 
which automatically parallelizes and executes programs as 
users specified the appropriate map and reduce tasks, while 
other common work such as web indexing, data mining, and 
machine learning etc., are handled by the MapReduce 
system. The big volume of data that these internet application 
processes has led to interest in parallel processing on 
commodity clusters. The leading example is Google, which 
uses its MapReduce framework to process 20 petabytes of 
data per day[4]. 

In this paper, we propose a new parallel solution for the 
recommender application using MapReduce framework. Our 
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3.3. MapReduce implementation 
This presents the high-level requirements of what each 

MapReduce step of the program should do. MapReduce 
could be considered as two separate operators: Map and 
Reduce. In our current implementation, the Map function is 
arbitrary code that processes a set of input data and computes 
the results for a set of rows of the matrix and returns the (x, 
y) location of each item as the key and the result of the 
computation as the value. The reduce function computes 
these statistics across the entire data set in order to finally 
determine the high weighted ranking product. 

 
 
 
 
 
 
 
         
 
Fig. 2. MapReduce for average voting for this item 
 
 
 
 
 
 
 
 
 
         

Fig. 4. MapReduce for VotingRank 
 
 
 

Fig. 3. MapReduce for VotingRank 
 
4. Experiments 

We have implemented the parallel construction and 
algorithm using JAVA programming language and the 
Hadoop middleware, an open-source implementation of 
MapReduce. Using the same code base allow us to compare 
the performance with MapReduce. 
   Many real datasets of user voting on different topic can 
be found on the Internet, including the IMDB movie 
ratings[5], the Jester joke ratings[6], the Book-Crossing book 
ratings[7] etc. Thus far, the GroupLens Research project has 
an ongoing MovieLens datasets[10], with ratings. To further 
investigate the MapReduce property, we applied our 
algorithms in two datasets of Movielens datasets. The first 
one consists of 100,000 ratings for 1682 movies by 943 
users. The second one consists of approximately 1 million 
ratings for 3900 movies by 6040 users. 

Distributing the task to a large cluster would clearly 
justify the overhead, but parallelizing to two or three 
machines would give virtually no benefit for the largest data 
set size we tested. 

The experiments were conducted on a 15 node cluster (1 
master, 14 slaves) with 2.0 GHz Intel Pentium 4 CPU, 512M 
RAM and 40GB 7200 RPM IDE hard disk space available 
per node. Every node was running Linux with kernel 2.6.24 

and Hadoop 0.16.0[8]. All nodes were on the same 100Mbps 
Ethernet network. 

Fig. 4 compares CPU time of processing two datasets. 
We observed that with processors (nodes) increasing, the 
CPU time of construction varies greatly when the datasets is 
larger. But the CPU time of construction falls down slowly 
for the small datasets because the workload per node is not 
full. Fig. 5 compares the speedup of processing two dataset 
with linear speedup. 

 
Fig. 4. CPU processing time 

 

 
Fig. 5. Speedup 

 
5. Conclusions 
  In this paper we have shown that an important class of 
model-building algorithms in recommender application can 
be straightforwardly recast into the MapReduce framework, 
yielding a distributed solution that is cost-effective, scalable, 
and reliable. Alternative strategies for parallelizing this 
algorithm either impose significant demands on the 
developer, the hardware infrastructure. They require making 
unwarranted independence assumptions, such as dividing the 
data sets into chunks and building separate models. We have 
further shown that on a 15-machine cluster of commodity 
hardware, the MapReduce implementations have excellent 
performance and scaling characteristics. It is our expectation 
that MapReduce will also provide solutions that the fast, 
easy, and cheap. 

Overall, our work establishes that MapReduce provides a 
useful programming for recommender application. 
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//Map function 
Map (k, v) { 
        for each Item in data 
                emit(n, v) 
} 
//Reduce function 
Reduce(k, v) { 
        for each Item in data 

result =      
       emit (p, result); 

} 

//Map function 
Map (k, v) { 
     int  i = 0 
        for each rating in data 
              i +=1 

rating += rating 
 emit(Item, C) 

} 
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