• 제목/요약/키워드: Vorticity transport

검색결과 41건 처리시간 0.037초

Structure and Vorticity of the Current Observed Across the Western Channel of the Korea Strait in September of 1987-1989

  • Byun, Sang-Kyung;Kaneko, Arata
    • Ocean and Polar Research
    • /
    • 제21권2호
    • /
    • pp.99-108
    • /
    • 1999
  • With sectional data obtained in September of 1987, 1988 and 1989 by quadrireciprocal ADCP measurement and CTD cast, the current structure, volume transport and vorticity in the Western Channel of the Korea Strait were studied. The characteristics of Tsushima Current water persisted throughout the summer especially in the homogeneous water of temperature $14-16^{\circ}C$ located at the depth of 50-100m below seasonal termocline. Thickness and velocity of the homogeneous layer are about 10-170m and 20-60cm/s. and the relative vorticity for this layer is shown to be nearly constant and it is smaller than the planetary vorticity. Potential vorticity of $2.70-7.10{\times}10^{-6}m^{-1}s^{-1}$ is found to be dependent mainly on planetary rather than on the relative vorticities. The Tsushima Current water represented by the homogeneous layer R14-16^{\circ}C$ may keep the potential vorticity at the area of strong current in the Strait. The ADCP current structure is similar to geostrophic current and the core of the current with the speed of 30-50cm/s is situated in the middle layer over the deep trough. With large tidal fluctuation the volume transport has mean value of 1.17sv which was about 40% larger than that of geostrophic calculation.

  • PDF

대향류 비예혼합화염과 상호작용하는 단일 와동의 생성특성에 관한 연구 (An Investigation on the Formation Characteristics of a Single Vortex Interacting with Counterflow Nonpremixed Flame)

  • 유병훈;오창보;황철홍;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.49-56
    • /
    • 2002
  • A two-dimensional direct numerical simulation is performed to investigate the formation characteristics of a single vortex interacting with $CH_4/N_2$-Air counterflow nonpremixed flame. The numerical method was based on a predictor-corrector scheme for a low Mach number flow. The detailed transport properties and a 16-step augmented reduced mechanism are adopted in this calculation. The budgets of the vorticity transport equation arc examined to reveal the mechanisms leading to the formation, evolution and dissipation of a single vortex interacting with counterflow nonpremixed flame. It is found that the stretching term, which depends on the azimuthal component of vorticity, and radial velocity, mainly generates vortieitv in non-reacting and reacting flows. The viscous and baroclinic torque term destroy the vorticity in non-reacting flow. In addition, the baroclinic torque term due to density and pressure gradient generates vorticity, while viscous and the volumetric expansion terms due to density gradient destroy vorticity in reacting flow.

  • PDF

Long-range Transport Mechanisms of Asian Dust associated with the Synoptic Weather System

  • Kim, Yoo-Keun;Lee, Hwa-Woon;Moon, Yun-Seob;Song, Sang-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_4호
    • /
    • pp.197-206
    • /
    • 2001
  • The long-range transport mechanisms of Asian dust were analyzed based on the synoptic weather system and numerical simulation by using NCEP/NCAR reanalysis and TOMS data during the periods of 1996-2001. We classified the whole weather types of eastern Asia during spring and created the representative weather types during the yellow sand events using cluster analysis and weather charts for the last 6 years(1996~2001). These long-range transport mechanisms were related to various pressure patterns including high and low, trough and ridge, and upper-level fronts. Case studies of the yellow sand events have performed by the simulation of MM5 with meteorological elements such as the horizontal wind of u and v component, potential temperature, potential vorticity, and vertical circulation during the episodic days(2~8 March 2001). In addition, the origin of the long-range transport was examined with the estimation of backward trajectory using HYSPLIT4 Model. In this paper, we concluded that three weather types at 1000 hPa, 850 hPa, 500 hPa, and 300 hPa levels were classified respectively. The dominant features were the extending continental outflow from China to Korea at 1000 hPa and 850 hPa levels, the deep trough passage and cold advection at 500 hPa and 300 hPa levels during the yellow sand events. And also, we confirmed the existence of pola $r_tropical jets in the upper-level, the behavior of potential vorticity over Korea, the estimation of potential vorticity through vertical cross section, and the transport of yellow sand through backward trajectories.es.

  • PDF

와도-속도 정식화에서 Lagrangian 보오텍스법과 유한체적법의 비교 (A Comparison of a Lagrangian Vortex Method with a Finite Volume Method for the Vorticity-Velocity Formulation.)

  • 김광수;이승재;서정천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.47-52
    • /
    • 2002
  • We present an improved Lagrangian vortex method in 2-D incompressible unsteady viscous flows, which is based on a mesh-free integral approach of the velocity-vorticity formulation. Vorticity fields are represented by discrete vortex blobs that are updated by the Lagrangian vorticity transport with the particle strength exchange scheme. Velocity fields are expressed in a form of the Helmholtz decomposition, which are calculated by a fast algorithm of the Biot-Savart integration with a smoothed kernel and by a well-established panel method. No-slip condition is enforced through viscous diffusion of vorticity from a solid body into field. The vorticity flux is determined in such a way that spurious slip velocity vanishes. Through the comparison with the existing finite volume scheme for the transient vortical flows around an impulsively started cylinder at Reynolds number Re=550, we would obtain a more accurate scheme for vortex methods in complicated flows.

  • PDF

와도를 기저로 한 초기 순간 출발하는 실린더 주위의 점성유동해석 (Vorticity Based Analysis of the Viscous Flow around an Impulsively Started Cylinder)

  • 김광수;서정천
    • 대한조선학회논문집
    • /
    • 제35권4호
    • /
    • pp.1-10
    • /
    • 1998
  • 본 논문에서는 비압축성 Newtonian 점성유동에서 초기에 순간 출발하는 2차원 실린더 주위의 유동을 해석하기 위해서, 와도를 기저로 한 수치해석기법을 제안하고 있다. Helmholtz 분리 형태로 표현된 Navier-Stokes방정식에서 유도되는 와도전달방정식과 압력방정식, 그리고 벡터등식에서 유도되는 속도-와도 관계식을 이 문제의 지배방정식으로 택하고, 경계조건으로는 물체표면에서 와도와 압력의 연성관계와 힘의 평형을 고려한 동적와도경계조건과 동적압력조건이 제시된다. 이 지배방정식과 경계조건을 수치적으로 처리하기 위하여, 와도와 압력이 연성되어 있는 경계조건은 Wu등(1994)이 제안한 대로, 연성관계를 유지한 채로 식을 분리하는 방법을 이용하였고, 와도전달 방정식은 유한체적법으로 계산하였으며, 그 식에 포함된 대류항을 처리하는 방법으로 TVD 방법을 이용하였다. 속도는 Biot-Savart적분항이 포함된 벡터등식에서 panel방법으로 구하고, 압력방정식은 형태가 Poisson방정식이므로 역시 panel방법을 이용하였다. 계산에 사용된 격자로 정규격자를 이용하고, 결과를 다른 수치적, 해석적 결과와 비교하여 그 타당성을 검증하였다.

  • PDF

대향류 반응 및 비반응 유동장에서의 단일 와동의 동적 거동 (Dynamic Behaviors of a Single Vortex in Counter Non-reacting and Reacting Flow Field)

  • 유병훈;오창보;황철홍;이창언
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1262-1272
    • /
    • 2003
  • A two-dimensional direct numerical simulation is performed to investigate the dynamic behaviors of a single vortex in counter reacting and non-reacting flow field. A predictor-corrector-type numerical scheme with a low Mach number approximation is used in this simulation. A 16-step augmented reduced mechanism is adopted to treat the chemical reaction. The budget of the vorticity transport equation is examined to reveal a mechanism leading to the formation, destruction and transport of a single vortex according to the direction of vortex generation in reacting and non-reacting flows. The results show that air-side vortex has more larger strength than that of fuel-side vortex in both non-reacting and reacting flows. In reacting flow, the vortex is more dissipated than that in non-reacting flow as the vortex approach the flame. The total circulation in reacting flow, however, is larger than that in non-reacting flow because the convection transport of vorticity becomes much large by the increased velocity near the flame region. It is also found that the stretching and the convection terms mainly generate vorticity in non-reacting and reacting flows. The baroclinic torque term generates vorticity, while the viscous and the volumetric expansion terms attenuate vorticity in reacting flow. Furthermore, the contribution of volumetric expansion term on total circulation for air-side vortex is much larger than that of fuel-side vortex. It is also estimated that the difference of total circulation near stagnation plane according to the direction of vortex generation mainly attributes to the convection term.

와도를 기저로 한 비압축성 점성유동해석 방법 (A Vorticity-Based Method for Incompressible Viscous Flow Analysis)

  • 서정천
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.11-21
    • /
    • 1998
  • A vorticity-based method for the numerical solution of the two-dimensional incompressible Navier-Stokes equations is presented. The governing equations for vorticity, velocity and pressure variables are expressed in an integro-differential form. The global coupling between the vorticity and the pressure boundary conditions is fully considered in an iterative procedure when numerical schemes are employed. The finite volume method of the second order TVD scheme is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition. The velocity field is obtained by using the Biot-Savart integral. The Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well established for potential flow analysis. The present formulation is validated by comparison with data from the literature for the two-dimensional cavity flow driven by shear in a square cavity. We take two types of the cavity now: (ⅰ) driven by non-uniform shear on top lid and body forces for which the exact solution exists, and (ⅱ) driven only by uniform shear (of the classical type).

  • PDF

원주주위를 지나는 흐름에 관한 수치해석 (Numerical Solutions for the Flow past a Cylinder)

  • 조용식;윤태훈
    • 물과 미래
    • /
    • 제21권3호
    • /
    • pp.291-291
    • /
    • 1988
  • 2차원 흐름이 원주주위를 지날 때 발생하는 흐름의 변화가 기본방정식인 연속방정식과 운동량방정식에 의하여 수치적으로 해석된다. 수치해석 과정은 기본방정식에 유함수, 와도 및 흐름의 특성을 나타내는 무차원 매개변수를 도입하여 무차원 유함수-와소수송식을 유도한 후, successive over relaxation scheme과 alternating direct implicit scheme으로 수행된다. 수치실험은 레이놀즈수 125-275를 기존의 수치해석에서는 주로 수치실험 결과와 비교한다. 원주표면의 압력을 구하는 방법에 있어서 기존의 수치해석에서는 주로 방사 운동량방정식만을 사용하였으나, 본 논문에서는 기존의 방법외에 방사 운동량방정식 및 접선 운동량방정식에 의해 압력을 계한하고, 두 값을 비교하여 레이놀즈수에 따른 압력을 구하는 방법을 제시한다. 또한 와도의 분포를 도시하여 원주에 의한 후류의 영향을 받지 않는 외부경계의 한계를 새로이 설정한다.

원주주위를 지나는 흐름에 관한 수치해석 (- Numerical Solutions for the Flow past a Cylinder-)

  • 조용식;윤태훈
    • 물과 미래
    • /
    • 제31권4호
    • /
    • pp.291-297
    • /
    • 1998
  • 2차원 흐름이 원주주위를 지날 때 발생하는 흐름의 변화가 기본방정식인 연속방정식과 운동량방정식에 의하여 수치적으로 해석된다. 수채해석 과정은 기본방정식에 유함수, 와도 및 흐름의 특성을 나타내는 무차원 매개변수를 도입하여 무차원 유함수-와소수송식을 유도한후, successive over relaxation scheme과 alternating direct implicit scheme으로 수행된다. 수치실험은 레이놀즈수 125-275를 갖는 흐름에 대하여 수행되었으며, 시간에 따른 유선, 와도, 원주표면의 압력을 구하는 방법에 있어서 기존의 수치해석에서는 주로 방사 운동량방정식만을 사용하였으나, 본 논문에서는 기존의 방법외에 방사 운동량방정식 및 접선 운동량방정식에 의해 압력을 계한하고, 두값을 비교하여 레이놀즈수에 따른 압력을 구하는 방법을 제시한다. 또한 와도의 분포를 도시하여 원주에 의한 후류의 영향을 받지 않는 외부경계의한계를 새로이 설정한다.

  • PDF

비압축성 점성유동의 와도와 압력 경계조건 (On the Vorticity and Pressure Boundary Conditions for Viscous Incompressible Flows)

  • 서정천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.15-28
    • /
    • 1998
  • As an alternative for solving the incompressible Navier-Stokes equations, we present a vorticity-based integro-differential formulation for vorticity, velocity and pressure variables. One of the most difficult problems encountered in the vorticity-based methods is the introduction of the proper value-value of vorticity or vorticity flux at the solid surface. A practical computational technique toward solving this problem is presented in connection with the coupling between the vorticity and the pressure boundary conditions. Numerical schemes based on an iterative procedure are employed to solve the governing equations with the boundary conditions for the three variables. A finite volume method is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition . The velocity field is obtained by using the Biot-Savart integral derived from the mathematical vector identity. Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well-established for potential flow analysis. The calculated results with the present mettled for two test problems are compared with data from the literature in order for its validation. The first test problem is one for the two-dimensional square cavity flow driven by shear on the top lid. Two cases are considered here: (i) one driven both by the specified non-uniform shear on the top lid and by the specified body forces acting through the cavity region, for which we find the exact solution, and (ii) one of the classical type (i.e., driven only by uniform shear). Secondly, the present mettled is applied to deal with the early development of the flow around an impulsively started circular cylinder.

  • PDF