• Title/Summary/Keyword: Vorticity generation

Search Result 51, Processing Time 0.025 seconds

Vertical Vorticity Structure Associated with the Boreal Summer Intraseasonal Oscillation: Barotropic or Baroclinic? (여름철 계절내 진동에 의한 대기 와도의 연직 구조: 순압성 또는 경압성?)

  • Song, Eun-Ji;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.259-265
    • /
    • 2012
  • This study investigates the reason why the barotropic vorticity structure prevails vertically in response to the enhanced convection associated with the boreal summer intraseasonal oscillation over the central Indian Ocean. The relative vorticity tendency analysis for a 2.5-layer simplified model demonstrates that the barotopic vorticity structure is predominant due to the following two factors: 1) vertical easterly shear on the meridional gradient of barotropic divergence (which induces generation of barotropic vorticity twice larger than that of baroclinic vorticity); and 2) vertical easterly shear on the meridional gradient of baroclinic divergence (which appears only in relation to the generation of barotropic vorticity). The percentage of contribution by each term to barotropic and baroclinic vorticity tendency equations is presented.

A Study on Numerical Adaptive Grid Generation for Incompressible Flow (비압축성유동을 위한 수치적응 격자생성에 관한 연구)

  • 이주희;이상환;윤준용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2237-2248
    • /
    • 1995
  • In incompressible flow which has multi-length scale, it has a very important effect which dependent variables are used for adaptive grid generation. Among many length scales in incompressible flow, the dependent variables used for the adaptive grid generation should be able to represent the feature of the concerned system. In this paper, by using vorticity and stream function, in addition to velocity components, the smoother and more stable grid generation is possible and these four flow properties represent each scale. The adaptive grid generation for a lid-driven cavity flow with $N_{re}$ =3200 using four flow properties such as velocity components, vorticity, stream function is performed, and the usefulness of using vorticity and stream function as the indicator for adaptive grid generation is shown.

NUMERICAL SIMULATIONS FOR THE CONTRACTION FLOW USING GRID GENERATION

  • Salem, S.A.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.383-405
    • /
    • 2004
  • We study the incomprssible Navier Stokes equations for the flow inside contraction geometry. The governing equations are expressed in the vorticity-stream function formulations. A rectangular computational domain is arised by elliptic grid generation technique. The numerical solution is based on a technique of automatic numerical generation of acurvilinear coordinate system by transforming the governing equation into computational plane. The transformed equations are approximated using central differences and solved simultaneously by successive over relaxation iteration. The time dependent of the vorticity equation solved by using explicit marching procedure. We will apply the technique on several irregular-shapes.

Dynamic Behaviors of a Single Vortex in Counter Non-reacting and Reacting Flow Field (대향류 반응 및 비반응 유동장에서의 단일 와동의 동적 거동)

  • Yoo, Byung-Hun;Oh, Chang-Bo;Hwang, Chul-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1262-1272
    • /
    • 2003
  • A two-dimensional direct numerical simulation is performed to investigate the dynamic behaviors of a single vortex in counter reacting and non-reacting flow field. A predictor-corrector-type numerical scheme with a low Mach number approximation is used in this simulation. A 16-step augmented reduced mechanism is adopted to treat the chemical reaction. The budget of the vorticity transport equation is examined to reveal a mechanism leading to the formation, destruction and transport of a single vortex according to the direction of vortex generation in reacting and non-reacting flows. The results show that air-side vortex has more larger strength than that of fuel-side vortex in both non-reacting and reacting flows. In reacting flow, the vortex is more dissipated than that in non-reacting flow as the vortex approach the flame. The total circulation in reacting flow, however, is larger than that in non-reacting flow because the convection transport of vorticity becomes much large by the increased velocity near the flame region. It is also found that the stretching and the convection terms mainly generate vorticity in non-reacting and reacting flows. The baroclinic torque term generates vorticity, while the viscous and the volumetric expansion terms attenuate vorticity in reacting flow. Furthermore, the contribution of volumetric expansion term on total circulation for air-side vortex is much larger than that of fuel-side vortex. It is also estimated that the difference of total circulation near stagnation plane according to the direction of vortex generation mainly attributes to the convection term.

Numerical Investigations of Vorticity Generation in Fully Vegetated Open-Channel Flows (수치모의를 이용한 전단면 식생 수로에서의 와도 생성 분석)

  • Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.179-189
    • /
    • 2010
  • This paper presents a numerical investigation of vorticity generation in fully vegetated open-channel flows. The Reynolds stress model is used for the turbulence closure. Open-channel flows with rough bed-smooth sidewalls and smooth bed-rough sidewalls are simulated. The computed vectors show that in channel flows with rough bed and rough sidewalls, the free-surface secondary currents become relatively smaller and larger, respectively, compared with that of plain channel flows. Also, open-channel flows over vegetation are simulated. The computed bottom vortex occupies the entire water depth, while the free-surface vortex is reduced. The contours of turbulent anisotropy and Reynolds stress are presented with different density of vegetation. The budget analysis of vorticity equation is carried out to investigate the generation mechanism of secondary currents. The results of the budget analysis show that in plain open-channel flow, the production by anisotropy is important in the vicinity of the wall and free-surface boundaries, and the production by Reynolds stress is important in the region away from the boundaries. However, this rule is not effective in vegetated channel flows. Also, in plain channel flows, the vorticity is generated mainly in the vicinity of the free-surface and the bottom, while in vegetated channel flows, the regions of the bottom and vegetation height are important to generate the vorticity.

Basic flow fields and stability characteristics of two dimensional V flames (이차원 V 화염의 기본 유동장과 안정화 특성)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong;Kim, Moon-Uhn
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.185-193
    • /
    • 2003
  • Basic flow fields of two dimensional V flames were examined as a preliminary work to study the instability of premixed flame with vorticity generation. Laminar premixed propane and methane flame were anchored by electrically heated wire to make two dimensional V flames. Flow fields were measured mainly by PIV(Particle Image Velocimetray) and the results were compared with those obtained by LDV(Laser Doppler Velocimetry) to confirm their reliability. Because the curvatures of V flames are so small, V flames were locally assumed to be inclined planar flames in gravitational field. The measured flow fields were locally compared with those of analytical solutions, which showed the qualitatively similar results. In downstream region, the vorticity fields were nearly constant except region near the center line, which support the assumption of locally one dimensional flame. Besides it was tried to find experimentally the similarity of flow fields in downstream region. Finally, stability diagram of propane and methane flames were drawn for the equivalence ratio less than one and the wide range of mean velocity.

  • PDF

Simulations of the early wake behavior induced by an impulsively started a semicircualr cylinder (급 출발하는 반원형 실린더에 의한 초기 후류거동의 시뮬레이션)

  • Cho Jiyoung;Lee Sanghwan;Jin Dongsik
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.349-352
    • /
    • 2002
  • The time-development of the wake vortices of the unsteady viscous flow past a semicircular cylinder is simulated using the vortex particle methods for direct numerical simulations(DNS). The early wake behaviour of the flow behind an impulsively started a semicircualr cylinder is evaluated for a range of Reynolds numbers between 60 and 200 with opposite body configurations respectively. The diffusion scheme based on the particle strength exchange(PSE) is used to account far the viscous effect accurately. And the vorticity generation algorithm to enforce the no-slip boundary conditions is employed. In order to redistribute particles efficiently on the distorted Lagrangian grid the particle distribution technique is adaptively revised, while maintaining the uniform resolution. The results of the simulations are compared to other experimental results.

  • PDF

Nature of the Wiggle Instability of Galactic Spiral Shocks

  • Kim, Woong-Tae;Kim, Yonghwi;Kim, Jeong-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2014
  • Gas in disk galaxies interacts nonlinearly with a underlying stellar spiral potential to form galactic spiral shocks. Numerical simulations typically show that these shocks are unstable to the wiggle instability, forming non-axisymmetric structures with high vorticity. While previous studies suggested that the wiggle instability may arise from the Kelvin-Helmholtz instability or orbit crowding of gas elements near the shock, its physical nature remains uncertain. It was even argued that the wiggle instability is of numerical origin, caused by the inability of a numerical code to resolve a shock that is inclined to numerical grids. In this work, we perform a normal-mode linear stability analysis of galactic spiral shocks as a boundary-value problem. We find that the wiggle instability originates physically from the potential vorticity generation at a distorted shock front. As the gas follows galaxy rotation, it periodically passes through multiple shocks, successively increasing its potential vorticity. This sets up a normal-mode that grows exponentially, with a growth rate comparable to the orbital angular frequency. We show that the results of our linear stability analysis are in good agreement with the those of local hydrodynamic simulations of the wiggle instability.

  • PDF

A Study on the Fluid Flow of Vortex Nozzle for Generating Micro-bubble (미세버블 발생용 보텍스 노즐의 유체유동에 대한 연구)

  • Yu, Seong-Hun;Park, Sang-Hee;Kang, Woo-Jin;Han, Seung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.637-644
    • /
    • 2022
  • In this study, the flow characteristics according to the shape of the vortex nozzle was studied by numerical analysis and the amount of microbubble generation was measured experimentally. The shape of the vortex nozzle is cylindrical, diffuser, and conical type. The axial fluid velocity in the induced tube gradually increased from the inlet to the outlet. In particular, the fluid velocity in the nozzle part increased rapidly. The velocity distribution of the fluid at the inlet of the induced tube showed that the flow rotates counterclockwise in the outer region and the inner center of the induced tube. At the outlet of the induced tube, the cylindrical and conical type showed rotational flow, and the diffuser type showed irregular turbulent flow. The dimensionless pressure ratio 𝜂 of the inner region of the induced tube was lower than that of the outer region. Also, 𝜂 near the outlet of the induced tube in cylindrical and conical type showed a similar tendency to the inlet area. At the outer region of inlet of induced tube, intense vorticity was observed on the wall and in lower region. At the inner region of inlet of induced tube, intense vorticity was observed on the inner wall of the induced tube and in the central region of the inlet of the induced tube. At the outlet of induced tube, in the case of the cylindrical and conical type, intense vorticity was observed near the inner wall, the diffuser type showed irregular strong vorticity inside the tube. The total number of bubbles measured was the most in the cylindrical type, and the microbubbles less than 50mm occurred the most in the conical type.

Numerical Analysis of the Subsurface Vortices in the Pump Sump Models (펌프 흡입수조 모형시험에서의 수중와에 대한 유동해석)

  • Kim, Jin-Young;Chung, Kyung-Nam;Kim, Hyu-Gon;Kim, Young-Hak
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.593-597
    • /
    • 2005
  • In order to study the characteristics of the subsurface vortex the flow fields of the three pump sump models were analysed by the numerical simulation. The calculation results show that there are circulation flows in the pump sump model and maximum vorticity strength which make iso-surface from the wall to the pump inlet could be used for predicting the subsurface vortex generation. Also, the flow field for the sump model with anti-vortex devices simulated and the results shows that there is no vorticity value which make iso-surface from the sump wall to the pump inlet.

  • PDF