• Title/Summary/Keyword: Vortical Structure

Search Result 125, Processing Time 0.029 seconds

WALL EFFECTS ON LAMINAR FLOW OVER A CUBE (정육면체 주위 층류 유동에 근처 벽면이 미치는 영향)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 2011
  • Laminar flow over a cube near a plane wall is numerically investigated in order to understand the effects of the cube-wall gap on the flow characteristics as well as the drag and lift coefficients. The main focus is placed on the three-dimensional vortical structures and its relation to the lift force applied on the cube. Numerical simulations are performed for the Reynolds numbers between 100 and 300, covering several different flow regimes. Without a wall nearby, the flow at Re=100 is planar symmetric with no vortical structure in the wake. However, when the wall is located close to the cube, a pair of streamwise vortices is induced behind the cube. At Re=250, the wall strengthens the existing streamwise vortices and elongates them in the streamwise direction. As a result, the lift coefficients at Re=100 and 250 increase as the cube-wall gap decreases. On the other hand, without a wall, vortex shedding takes place at Re=300 in the form of a hairpin vortex whose strength changes in time. The head of hairpin vortex or loop vortex, which is closely related to the lift force, seems to disappear due to the nearby wall. Therefore, unlike at Re=100 and 250, the lift coefficient tends to decrease more or less as the cube approaches the wall.

Interaction Effects of Turbulent Flow and Chemical Reaction in a Swirl Combustor (스월연소기의 난류와 화학반응 간섭효과)

  • Sung, Hong-Gye;Kim, Jong-Chan;Yang, Vigor;Cha, Bong-Jun;Ahn, I-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.71-74
    • /
    • 2007
  • Large Eddy Simulation(LES) has been conducted to insight interaction effects of turbulent flow and chemical reaction of a lean-Premixed swirl combustor. The unsteady turbulent flame is carefully simulated so that the motion of flow and flame can be characterized in detail. Fuel lumps escaping from the primary combustion zone move downstream and consequently produce local hot spots conveying large vortical structures in the azimuthal direction. The correlation between pressure oscillation and unsteady heat release is examined by the spatial and temporal Rayleigh parameter.

  • PDF

A Function of Resolution and Display Quality in LCD (LCD 에서 해상도와 Display Quality 의 상관관계)

  • 최승규;강인병;송영철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.343-346
    • /
    • 2003
  • In this paper, we try to make a systematic analysis for the vertical crosstalk on LCD driving. The vertical Crosstalk is one of the inevitable phenomena in the high-resolution TFT-LCDs. At first, the vortical Crosstalk is defined. Considering the structure of the pixels and data lines, a LCD (a pixel) is modeled electrically by its' equivalent circuit. The circuit is verified by experiment and used to find the cause of the vertical Crosstalk.

  • PDF

The Flow Field Structures of In-lined Double Jet-in-Cross Flow at Low Velocity Ratio (낮은 속도비에서의 직렬 이중 제트-교차흐름의 유동 구조)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.415-422
    • /
    • 2015
  • The flow field structures of dual jet-in-cross-flow were examined experimentally for in-lined perforated damage holes configuration using particle image velocimetry. Ensemble averaged in-plane velocity and vorticity data in the jet were determined to study the mean jet structure. Jets are formed by pressure differences between upper and lower airfoil surface. The flow structure of vicinity of the thru holes consist of a vortical structure that wrap around the jets like a horseshoe and develop further downstream through a pair of stream-wise vortices. The shape, size and location of the horseshoe vortex were found to be dependent on the angle of attack. In spite of the existence of battle damage holes, the effect on the control force was insignificant when the damage size was not large enough.

A Proposal of Quasi Static Seismic Force for Arches subjected to both the Horizontal and Vertical Seismic Wave (수평.상하 지진을 받는 아치구조물에 대한 등가정적지진력 제안)

  • Jung, Chan-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.103-110
    • /
    • 2007
  • Only horizontal seismic waves are often applied as designed load to a rectangular rigid frame because the influence of vertical seismic waves is considered small so as to be able to ignore it. But, as for the seismic responses of shell and spatial structures, the responses in the vortical direction is significantly amplified and the vertical responses are amplified even if they are subjected to the horizontal seismic wave only. And also, the horizontal and vertical seismic responses of shell and spatial structures are amplified by vortical seismic waves. An arch has been often used as the main structure component of the large spatial structures and is the mostly simple structure with the seismic response characteristics of the spatial structures. In this paper, for arches as a simple example of the shell and spatial structures, the dynamic characteristics, when the structures are subjected to the horizontal and vertical seismic wave at the same time, are studied, and the horizontal and vertical static seismic force, which have simple forms but hold the response characteristics of arches, are proposed.

  • PDF

Large-Scale Vertical Structure in Separated and Reattaching Turbulent flow over a Backward Facing Step (후향계단 난류 박리재부착 유동에서의 대형와의 구조)

  • Ahn, Seung-Kwang;Lee, In-Won;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1674-1680
    • /
    • 2002
  • An experimental study was made of a large-scale vortical structure over a backward-facing step. The Reynolds number based on the step height was R $e_{H}$ =33,000. To recognize the large-scale vortex, three components of velocity were measured. The measurements were performed in the recirculation zone (x/H=4.0) and the reattachment zone(x/H=7.5). To measure the wall pressure fluctuations in a turbulent flow over a backward-facing step, a 32-channel microphone array was installed beneath the wall in the streamwise and spanwise directions. From the measured pressure field, the size of large-scale vortex was obtained. As a detailed study, a conditionally-averaging technique was employed to characterize the coherent structure of the large-scale vortex. To see the relationship between the flow field and the relevant spatial mode of the pressure field, the spatial box filtering (SBF) was examined. A cross-correlation between velocity and pressure fluctuations was performed to identify the structure and the length scale of the large-scale vortex.x.

PIV Velocity Field Measurements of Flow around a Ship with Rotating Propeller (PIV를 이용한 선박 프로펠러 후류의 속도장 계측)

  • 이상준;백부근
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.17-25
    • /
    • 2003
  • Velocity field behind a container ship model with a rotating propeller has been investigated using PIV (particle image velocimetry) system. Four hundred instantaneous velocity fields were measured at 4 different blade phases and ensemble-averaged to investigate the spatial evolution of vortical structure of near wake within one propeller diameter downstream. The phase-averaged mean velocity fields show the potential wake and the viscous wake formed due to the boundary layers developed on the blade surfaces. The interaction between bilge vortex developed along the hull surface and the tangential velocity component of incoming flow causes to have asymmetric flow structure in the transverse plane.

Design for Dual Polarization Antenna Element using Electromagnetic-Coupled Dipole (전자결합 다이폴을 이용한 편파공용 안테나 소자의 설계)

  • ;;;;;;Hiroyuki Arai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.128-131
    • /
    • 2000
  • This paper describes design for dual-linear polarization antenna using EMC(electromagnetic-coupled) dipole. EMC dipole has a simple element structure and it is fed by microstrip line. Vortical and horizontal polarization are determined by structure of dipole fed by microstrip line. FDTD Method is used for an analysis of antenna element. Length, width, height and offset of dipole are designed for 1-element antenna. Resonant length of diploe differs from the calculated value by a formula because of coupling effect of dipole and feed line. Radiation Power is controlled by the offset of dipole. In prectical fabrication of antenna array, a constant height of dipoles is required. Therefore, the teflon plate with height of 0.8 mm is considered in antenna element design for the vertical polarization.

  • PDF

A Study of Generation of Coherent Vortex in Late Wake (잔류내 응집 구조 와류의 생성에 관한 연구)

  • Lee Sungsu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.443-446
    • /
    • 2002
  • Wake downstream of an object in the stratified flow has been of long-standing interest in fluid dynamics because of its similarity to geophysical flow over topographical terrains and more recently, concerns about the wake left behind a body moving through the ocean thermocline. Decades of studies of geophysical flow have unveiled that the flow downstream of obstacles in stratified flow consists of attached wake and strong internal waves, or separated, fluctuating wake and persistent late wakes, all of which depend on the flow conditions. Among unique and interesting characteristics of the stratified flow past obstacles is the generation of coherent vortex structure in the late wake far downstream of the object. Without the density stratification, the flow field downstream becomes undisturbed after relatively fast diminishing of the near wake. However, no matter how small the stratification is, the flow field downstream self-develops coherent vortex structures even after diminishing of the near wake. This paper present a computational approach to simulate the generation mechanism of the coherent vortex and analysis of the vortical structure.

  • PDF

FLUID-STRUCTURE INTERACTION ANALYSIS FOR VORTEX-INDUCED VIBRATION OF CIRCULAR CYLINDER (유체-구조 연성해석을 통한 원주의 와유기 진동 해석)

  • Kim, S.H.;Ahn, H.T.;Ryue, J.S.;Shin, H.K.;Kwon, O.J.;Seo, H.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • Fluid-Structure Interaction analysis of a circular cylinder surrounded by incompressible turbulent flow is presented. The fluid flow is modeled by incompressible Navier-Stokes equations in conjunction with large-eddy simulation for turbulent vortical flows. The circular cylinder is modeled as elastic continuum described by elasto-dynamic equation of motion. Finite element method based approach is utilized for unified formulation of fluid-structure interaction analysis. The magnitude and frequency of structural response is analysed in comparison to the driving fluid forces.