• Title/Summary/Keyword: Vortex-In-Cell method

Search Result 24, Processing Time 0.029 seconds

Analysis of Viscous Flow Around an Impulsively Started Marine Propeller Using VIC(Vortex In Cell) Method (VIC(Vortex In Cell) 방법을 이용한 순간 출발하는 프로펠러 주위의 점성유동 해석)

  • Lee, Jun-Hyeok;Kim, Yoo-Chul;Lee, Youn-Mo;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • The 3-D unsteady viscous flow around an impulsively started rotating marine propeller is simulated using VIC(Vortex-In-Cell) method which is adequate to analyze the strong vortical flow around complicatedly-shaped body. The computational procedure is governed by the vorticity transport equation in Lagrangian form. In order to solve the equation, a regular grid which is independent to the shape of a body is introduced and each term of the equation is evaluated numerically on the grid by applying immersed boundary concept. In this paper, the overall algorithm including the formulation of governing equations and boundary conditions is described and some computational results are presented with discussing their physical validity.

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1034-1043
    • /
    • 2015
  • This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

Flow Control on Wind Turbine Airfoil with a Vortex Cell (와류 셀을 이용한 풍력블레이드 에어포일 주위 유동 제어)

  • Kang, Seung-Hee;Kim, Hye-Ung;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.405-412
    • /
    • 2012
  • A flow control on airfoil installed a vortex cell for high efficiency wind turbine blade in stationary and dynamic stall conditions have been numerically investigated by solving the compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with Roe's flux-difference splitting and an implicit time-integration method coupled with dual time step sub-iteration. The computed result for the airfoil in the stationary showed that lift-drag ratio increases due to low pressure by the vortex cell. The oscillating airfoil with the vortex cell showed that the magnitude of hysteresis loop is reduced due to the enhanced vortex in the cell.

Vortex Shedding Frequency for a 2D Hydrofoil with a Truncated Trailing Edge (뒷날이 잘린 2차원 수중익의 와도 흘림 주파수)

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.480-488
    • /
    • 2014
  • Vortex shedding which is the dominant feature of body wakes and of direct relevance to practical engineering problems, has been intensively studied for flows past a circular cylinder. In contrast, vortex shedding from a hydrofoil trailing edge has been studied to much less extent despite numerous practical applications. The physics of the problem is still poorly understood. The present study deals with $K{\acute{a}}rm{\acute{a}}n$ vortex shedding from a truncated trailing-edge hydrofoil in relatively high Reynolds number flows. The objectives of this paper are twofold. First, we aim to simulate unsteady turbulent flows past a two dimensional hydrofoil through a hybrid particle-mesh method and penalization method. The vortex-in-cell (VIC) method offers a highly efficient particle-mesh algorithm that combines Lagrangian and Eulerian schemes, and the penalization method enables to enforce body boundary conditions by adding a penalty term to the momentum equation. The second purpose is to investigate shedding frequencies of vortices behind a NACA 0009 hydrofoil operating at a zero angle of attack.

Simulation of the Vortex Shedding from a Circular Cylinder by Means of the Vortex Cloud Model (Vortex Cloud Model에 의한 추상체 주위의 Vortex 유출 Simulation)

  • D.K. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.62-74
    • /
    • 1993
  • The vortex shedding from a circular cylinder placed in a steady uniform stream is simulated by the vortex cloud model of the discrete vortex method. The vorticity created at the cylinder surface is discretely represented by a number of nascent vortices at each time step and the motion of these cumulative vortices is monitored to produce the evolution of the vortex distribution pattern. Convection of vortices was traced by the vortex-in-cell technique and the force coefficients were calculated by both Sarpkaya's formulae and Lee's formulae for comparison. Discussions concerning the interrelation between the computational parameters and some principles for choosing the suitable values are included.

  • PDF

A Comparative Study on Similarity of Flow Fields Reconstructed by VIC# Data Assimilation Method (VIC# 자료동화 기법을 통해 재구축된 유동장의 상사성에 관한 비교 연구)

  • Jeon, Young Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.23-30
    • /
    • 2018
  • The present study compares flow fields reconstructed by data assimilation method with different combinations of parameters. As a data assimilation method, Vortex-in-Cell-sharp (VIC#), which supplements additional constraints and multigrid approximation to Vortex-in-Cell-plus (VIC+), is used to reconstruct flow fields from scattered particle tracks. Two parameters, standard deviation of Gaussian radial basis function (RBF) and grid spacing, are mainly tested using artificial data sets which contain few particle tracks. Consequent flow fields are analyzed in terms of flow structure sizes. It is demonstrated that sizes of the flow structures are proportional to an actual scale of the standard deviation of RBF. It implies that a combination of larger grid spacing and smaller standard deviation which preserves the actual standard deviation is able to save computational resources in case of a low track density. In addition, a simple comparison using an experimental data filled with dense particle tracks is conducted.

Viscous Effect by Random Walk Method in VIC Method (Vortex-in-Cell법에 있어 랜덤워크법에 의한 점성효과)

  • No, Gi-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.194-200
    • /
    • 2002
  • A method for simulating flow of extremely low Reynolds number in a vortex-in-cell (VIC) was studied. The viscous diffusion was represented by the random walk method. The validity of this method was proven by applying it to the flows passing over a fence placed vertically at an extremely low Reynolds number. The effects of parameters of the VIC method on the random walk method, such as the number of point vortices, the mesh density and the time increment, were investigated by numerical analysis using a one-dimensional diffusion equation. Changes in the relative error of vorticity depending on those parameters were clarified.

A STUDY OF INCOMPRESSIBLE VISCOUS FLOW ANALYSIS BY VORTEX-IN-CELL METHOD (보오텍스 인 셀 방법을 이용한 점성유동해석 연구)

  • Lee, J.H.;Kim, Y.C.;Lee, K.J.;Suh, J.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.78-85
    • /
    • 2011
  • The Vortex-In-Cell(VIC) method combined with panel method is applied to the analysis of incompressible unsteady viscous flow. The dynamics of resulting flow is governed by the vorticity transport equation in Lagrangian form with vortex particle representation of the flow field. A regular grid which is independent to the shape of a body is used for numerical evaluation based on immersed boundary technique. With an introduction of this approach, the development and validation of the VIC method is presented with some computational results for incompressible viscous flow around two or three dimensional bodies such as wing section, sphere, finite wing and marine propeller.

  • PDF

Boundary Layer Flow Under a Sluice Gate (수직수문하의 경계층흐름)

  • 이정열
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.95-105
    • /
    • 1994
  • The boundary layer flow under a sluice gate is numerically solved by the random vortex sheet method combined with the vortex-in-cell method in a boundary-fitted coordinate system. The numerical solution shows that the boundary layer developed along the vertical sluice gate wall is the primary cause for the discrepancy in the contraction ratio between the laboratory experiments and inviscid theory; the bottom boundary layer plays much a smaller role in the discrepancy. By dimensional analysis it is concluded that the discrepancy is inversely proportional to the 3/4th power of the gate opening, as analyzed by Benjamin(1956). The results of the numerical simulation and dimensional analysis show a good agreement with experimental results obtained by Benjamin(1956).

  • PDF

A Numerical Study on the Leakage of a Liquid from an Underwater Pipe without Pressure Gradient (압력구배가 없는 수중 파이프에서의 액체 오염물 유출에 관한 수치연구)

  • Song Museok;Han Jahoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.18-24
    • /
    • 2000
  • A two-dimensional numerical method for inviscid two-fluid flows with a significant entrainment into both directions is established, and the oil leakage from a non-pressurized underwater pipe is studied. The interface between two fluids is modeled at a vortex sheet. The flow field and the subsequent interface evolution are solved by using the vortex-in-cell method. For longer flow simulation with a realistic two fluids interaction, an efficient merging scheme is introduced. In the Boussinesq limit, the speed of the external fluid intrusion into the pipe is very close to the existing mathematical models, and the lock exchange is observed in spite of a significant roll-up of the interface and entrainments. It is believed that the developed method can be utilized effectively for further detailed studies on various two-fluid flows which are encountered in many different marine oil spill problems.

  • PDF