• 제목/요약/키워드: Vortex nozzle

검색결과 106건 처리시간 0.028초

보텍스튜브의 노즐에 대한 실험적 연구 (Experimental Study to Nozzle of Vortex Tube)

  • 유갑종;방창훈
    • 태양에너지
    • /
    • 제19권4호
    • /
    • pp.1-10
    • /
    • 1999
  • The phenomena of energy separation through the vortex tube was investigated experimentally, to see the effect of nozzle area ratio and partial admission rate on the energy separation and cooling capacity. The experiment was tarried out with various nozzle area ratios from 0.031 to 0.232 and partial admission rate from 0.176 to 0.956 by varying input pressure($0.2{\si\m}0.5$ MPa) and cold air mass fraction($y=0.1{\sim}1.0$). From the experimental result, we found the optimum nozzle area ratio and the effective partial admission rate for the available use and best cooling performance in given operation condition. While the maximum drop of cold air temperature was observed at around y=0.3 and $S_n=0.155$, the maximum cooling capacity was observed at around y=0.6 and $S_n=0.094$.

  • PDF

기본교란 및 분수조화교란을 이용한 원형제트에서의 보텍스병합 (Vortex pairing in an axisymmetric jet using fundamental and subharmonic forcing)

  • 조성권;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1350-1362
    • /
    • 1997
  • An experimental study has been performed on vortex pairing under fundamental and subharmonic forcing with controlled initial phase differences through hot-wire measurements and a multi-smoke wire flow visualization. For the range of St$_{D}$ < 0.6, vortex pairing was controlled by means of fundamental and subharmonic forcing with varying initial phase differences. Much larger mixing rate was achieved by two-frequency forcing with a proper phase difference than one frequency forcing. As St$_{D}$ decreased, vortex pairing was limited to a narrow region of the initial phase difference between two disturbances and higher amplitudes of the fundamental and its subharmonic at the nozzle exit were required for more stable pairing. As the amplitude of the subharmonic at the nozzle exit increased for fixed St$_{D}$ and fundamental amplitude, the distribution of the subharmonic mode against the variation of the initial phase difference changed from a sine function form into a cusp-like form. Thus, vortex pairing can be controlled more precisely for the former case. For St$_{D}$ > 0.6, non-pairing advection of vortices due to the improper phase difference was sometimes observed in several fundamental forcing amplitudes when only the fundamental was applied. However, when its subharmonic was added, vortex pairing readily occurred. As the initial amplitude of this subharmonic increased, the position of vortex pairing moved upstream. This was thought to be due to the fact that the variation of the initial phase difference between the fundamental and its subharmonic has less effects on vortex pairing in the region of fundamental-only vortex pairing.pairing.

단면적이 변하는 실린더 관에서의 음향, 엔트로피 및 와류 파동 (Acoustic, Entropy and Vortex Waves in a Cylindrical Tube With Variable Section Area)

  • 조규식
    • 한국추진공학회지
    • /
    • 제8권4호
    • /
    • pp.55-66
    • /
    • 2004
  • 본 논문에서는 로켓 엔진의 고주파 연소불안정 현상이 연소현상과 맞물린 음향학적 현상이라는점과 일반적으로 로켓엔진의 연소실 및 배기노즐이 원통형이라는 점을 고려하여 단면적이 변하는 원통형 관에서 음향, 엔트로피 및 와류 파동방정식의 해를 구하는 방법을 제시하였고 이를 통하여 엔트로피 및 와류파동이 음향파동에 미치는 영향을 수학적으로 해석 및 계산 할 수 있는 방법을 제시하였다. 이를 바탕으로 초음속 노즐에서 음향파동의 반사계수를 계산해 봄으로서 엔트로피 및 와류파동이 음향파동의 반사율을 강화 혹은 약화시킬 수 있다는 것을 보였다.

기관적용 저압용 vortex tube의 에너지 분리특성에 관한 실험적 연구 (An Experimental Study on the Energy Separation in a Low Pressure Vortex Tube for Engine)

  • 오동진;임석연;윤면근;류정인
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.235-241
    • /
    • 2002
  • The process of energy separation in a low pressure vortex tube with air as a working medium is studied In detail. Experimental data of the temperature of the cold and hot air leaving the vortex tube are presented. The variation of the maximum wall temperature along the inner surface of the vortex tube and the temperature distribution in the vortex tube provides useful information about the location of the stagnation point of the flow field at the axis of the vortex tube. In this study Outer tube is used for the application of Diesel engine exhaust. The hot gas flow is fumed 180° and passes the outside of the vortex tube a second time heating it. From this geometric setup of a vortex tube the effects of energy separation and the prediction of the ignition of Diesel Soot is presented by experimental data.

수직구조물 후방의 와류현상이 구조물에 설치된 벤투리관의 유체가속 효과에 미치는 영향에 관한 해석 연구 (Effect of Rear-Vortex of a Convergent-Divergent Duct on the Flow Acceleration Installed in a Vertical Structure)

  • 정광섭;김철호;조현성
    • 설비공학논문집
    • /
    • 제25권2호
    • /
    • pp.94-100
    • /
    • 2013
  • A convergent-divergent nozzle or venturi nozzle has been used to accelerate the wind speed at its throat. The wind speed at the throat is inversely proportional to its area according to the continuity equation. In this numerical study, an airflow phenomena in the venturi system placed at a vertical structure was investigated to understand the vortex effect occurred at the rear-side of the vertical structure on the air speed increment at the throat of the venturi system. For this study, a venturi system sized by $20(m){\times}20(m){\times}6(m)$ was modelled and the area ratio(AR) of the model venturi was 2.86. To see the vortex effect on the air flow acceleration in the venturi throat, two different boundary conditions was defined From the study, it was found that the pressure coefficient(CP) of the venturi system with the vortex formed at the exit of the venturi was about 2.5times of the CP of the venturi system without the vortex effect. The velocity increment rate of the venturi system with the vortex was 61% but 9.5% only at the venturi system without the vortex. Conclusively, it can be said that the venturi system installed in a vertical structure has very positive effect on the flow acceleration at its throat due to the vortex formed at the rear-side of the vertical structure.

공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향- (A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation -)

  • 방창훈;추홍록;유갑종
    • 한국안전학회지
    • /
    • 제14권1호
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF

가진된 부착화염에서 거대와동의 거동 (Behavior of the Coherent Structure on the Attached Forced Flame)

  • 김대원;이기만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.259-266
    • /
    • 2009
  • An experimental study was conducted to investigate the effects of forcing amplitude on the flow structure near the nozzle exit of forced jet diffusion flames. The jet was excited up to the blowout occurrence by a considerable large amplitude with a periodic velocity fluctuation at the tube resonating frequency. In the attached flame regime, we disclosed the very interesting result newly that adding of a moderate forcing amplitude caused the jet flame to become longer in spite of being forced. Particular attention is focused on the turnabout mechanism of vortex roll-up around the elongated flame, which has not been reported previously, and on the inner coherent structure of the forced jet in the attached flame regime. From the velocity and flow visualization results, it was ascertained that the surrounding air due to the occurrence of negative velocity parts was suck into the fuel nozzle. To aid in understanding the rotating phenomenon of coherent structure, we present a schematic diagram of the turnabout mechanism of vortex roll-up. The mechanism of vortex turnabout phenomenon can be easily understood by considering the positive and negative velocity amplitudes about the instantaneous velocity of the forcing flow, as shown in this diagram.

고체모터의 인히비터에 의한 압력 진동 특성 LES 연구 (LES Investigation of Pressure Oscillation in Solid Rocket Motor by an Inhibitor)

  • 홍지석;문희장;성홍계
    • 한국추진공학회지
    • /
    • 제19권1호
    • /
    • pp.42-49
    • /
    • 2015
  • 3차원 Large Eddy Simulation(LES)와 Proper Orthogonal Decomposition(POD) 기법을 이용하여 고체로켓의 인히비터에서 발생하는 연소실내 압력 진동 특성을 분석하였다. 인히비터 후방에서 발생한 와류는 Flow-acoustic coupling에 의해 주기적으로 반복하여 생성, 소멸이 이루어지는 것을 확인하였고, 이 와류가 내삽 노즐 입구 도출부에 충돌하면서 유동이 불균질하게 분해되고, 후방 돔으로 유입된 유동에 의한 압력 진동은 연소실 압력 진동 가진의 원인이 된다. 또한 인히비터에서 발생하는 와흘림(vortex shedding) 주기는 연소실내 와류 발생 주기와 일치하며, 실험에서 측정된 압력 진동 주파수와 비교 분석하였다.

원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성 ( 2 ) - 음향여기된 제트 - (Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet ( 2 ) - With Acoustic Excitation -)

  • 황상동;이창호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.373-381
    • /
    • 2000
  • The flow and heat transfer characteristics on the impingement surface can be controlled by the change of vortex with the acoustic excitation, because the flow characteristics of an impinging jet are affected strongly by the vortices formed at the jet exit. To investigate the effects of acoustic excitation, we measured the velocity, turbulent intensity distributions for the free jet and local heat transfer coefficients on a impingement surface. As the acoustic excitation, subharmonic frequency of excited frequency plays an important role to the control of the jet flow. If the vortex pairings are promoted by the acoustic excitation, turbulence intensity of the jet flow is increased quickly. On the other hand if the vortex pairings are suppressed, the jet flow has low turbulence intensity at the center of the jet. Therefore, the low heat transfer rates are obtained on the impingement plate for a small nozzle-to-plate distance. However, it has high heat transfer rates at a large distance between the nozzle and plate due to the increasing of potential-core length.

볼텍스 튜브의 에너지 분리 현상에 관한 수치해석 연구 (Study of Energy Separation Mechanism in Vortex Tube by CFD)

  • 최원철;정명균
    • 대한기계학회논문집B
    • /
    • 제32권2호
    • /
    • pp.92-99
    • /
    • 2008
  • The "energy separation phenomenon" through a vortex tube has been a long-standing mechanical engineering problem whose operational principle is not yet known. In order to find the operational principle of the vortex tube, CFD analysis of the flow field in the vortex tube has been carried out. It was found that the energy separation mechanism in the vortex tube consists of basically two major thermodynamic-fluid mechanical processes. One is the isentropic expansion process at the inlet nozzle, during which the gas temperature is nearly isentropically cooled. Second process is the viscous dissipation heating due to the high level of turbulence in both flow passages toward cold gas exit as well as the hot gas exit of the vortex tube. Since the amount of such a viscous heating is different between the two passages, the gas temperature at the cold exit is much lower than that at the hot exit.