• Title/Summary/Keyword: Vortex generator

Search Result 109, Processing Time 0.025 seconds

Design and Numerical Analysis of Swirl Generator in Internal Duct using Delta Wing with Vortex Flap (와동 플랩 삼각날개를 이용한 관내 와류 발생장치 설계 및 수치해석)

  • Kim, Myung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.761-770
    • /
    • 2007
  • In this study, a swirl generator using delta wing was developed in order to simulate total pressure distortion and flow angle distortion. The delta wing was used for $65^{\circ}$-degree sweep back angle to satisfy the design performance for vortex core position, total pressure distortion(DC90) and swirl angle. To extend the swirling flow area, a $45^{\circ}$-degree vortex flap have applied to the delta wing. The swirl generator satisfied the design requirement of distortion coefficient in the flow distortion test to be applied to the simulation duct, and the performances of distortion for vortex core position and swirl angle using CFD(computational fluid dynamics) analysis results that was verified by flow distortion test results.

Experimental Study of Manipulating the Vertical Fence Wake using the Vortex Generator (와류 생성기를 이용한 수직벽 후류 제어의 실험적 연구)

  • Lee, Sang-Hyuk;Kang, In-Su;Cha, Jae-Eun;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.12-16
    • /
    • 2010
  • The effect of vortex generators to manipulate the separated flow region behind the vertical fence was experimentally investigated. The experiments were performed in the circulating water channel. The parameters used in this study were the distance between the fence and vortex generators and size of vortex generators. Digital PIV method was applied to measure the instantaneous velocity fields around the fence. And the obtained flow properties were compared with those of fence How without the vortex generators. The obtained results quantitatively shows the specific size and distance of vortex generators which were effective to reduce the mean reattachment length of separation bubble behind the fence.

A Comparative Study on the Flow and Heat Transfer Performance Characteristics of Vortex Generators and Guide Vane in Fin-Tube (핀-튜브에서 와류 발생기와 가이드 베인의 유동 및 전열 성능 특성에 관한 비교 연구)

  • Bae, JiHwan;Oh, YeongTaek;Lee, ChangHyeong;Lee, DeukHo;Kim, KuiSoon
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 2020
  • In this paper, the effects of the delta winglet vortex generator, the airfoil vortex generator and the guide vanes on the friction factor and the Colburn factor in the fin-tube flow were studied. The vortex generator and guide vane were non-dimensionalized based on the channel height and tube diameter, and locations were selected according to the authors' suggestions. The Reynolds number based on the inlet velocity and the tube diameter was selected in the range of 1400-8000. As a result, the friction factor resulted in a 4.7% decrease in guide vanes at the Reynolds number 8000 over the conventional fin-tube, and the Colburn factor resulted in a 33% increase in the delta winglet vortex generator at the Reynolds number 3800 over the conventional fin-tube.

The Characteristics of Fluid Flow in a Channel by Oscillating Vortex Generator (가진되는 와류발생기에 의한 채널내의 유동 특성)

  • Bang, Chang-Hoon;Kim, Jung-Soo;Choo, Hong-Lok
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.1-7
    • /
    • 2007
  • A problem of a unsteady time-dependent flow in a channel is of practical importance and widely considered in the design of devices such as heat exchangers, duct, and electronic equipments. The characteristics of fluid flow in channel with oscillating vortex generator was investigated experimentally. The main object of this study was to investigate the effect of the excited frequency, the excited amplitude, and Reynolds numbers on the generated frequency. Flow patterns were visualized using smoke generator and generated frequencies were measured using hot wire anemometer. When the excited frequency is increased, excited amplitude decreased and Reynolds number increased, the strength of PSD of generated frequency is decreased.

Numerical Study on Heat Transfer and Flow Characteristics of Pin Fin with Swept Airfoil Shape Vortex Generator (후퇴익형 형상의 와류발생기가 있는 핀휜 유동의 전열 및 유동 특성 분석에 관한 수치적 연구)

  • Lee, Changhyeong;Oh, Yeongtaek;Bae, Jihwan;Lee, Deukho;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.28-34
    • /
    • 2019
  • In this study, pin-fin arrays, which are widely used for cooling turbine blades, were studied. The vortex generator in pin-fin arrays is located in front of the circular tube. The cross-section of the vortex generator is NACA-9410. The purpose of this study is to analyze heat transfer performance and flow characteristics of pin-fin arrays. The position of vortex generator is changed with the vertical flow direction on the bottom wall. Pin-fin arrays were calculated with 6000, 10000 and 15000 Reynolds number. The commercial program ANSYS v18.0 CFX and the turbulence model $k-{\omega}$ SST were used. As a result, the heat transfer performance increased up to 5.8% and pressure loss increased less than 1%.

Application of Flow Control Devices for Smart Unmanned Aerial Vehicle (SUAV) (스마트무인기에 적용한 유동제어 장치)

  • Chung, Jin-Deog;Hong, Dan-Bi
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.197-206
    • /
    • 2009
  • To improve the aerodynamic efficiency of Smart Unmanned Aerial Vehicle (SUAV), vortex generators and flow fence are applied on the surface and the tip of wing. The initially applied vortex generator increased maximum lift coefficient and delayed the stall angle while it produced excessive increase in drag coefficient. It turns out reduction of the airplane's the lift/drag ratio. The new vortex generators with L-shape and two different height, 3mm and 5mm, were used to TR-S4 configuration to maintain the desired level of maximum lift coefficient and drag coefficient. Flow fence was also applied at the end of both wing tip to reduce the interaction between nacelle and wing when nacelle tilting angles are large enough and produce flow separation. To examine the effect of flow fence, flow visualization and force and moment measurements were done. The variation of the aerodynamic characteristics of SUAV after applying flow control devices are summarized.

  • PDF

A Numerical Simulation of Longitudinal Vortex in Turbulent Boundary Layers (3차원 난류경계층 내에 존재하는 종방향 와동의 유동특성에 관한 수치적 연구)

  • Yang, Jang-Sik;Lee, Ki-Baik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.802-813
    • /
    • 2000
  • This paper represents numerical computations of the interaction between the longitudinal vortex and a flat plate 3-D turbulent boundary layer. In the present study, the main interest is in the behavior of longitudinal vortices introduced in turbulent boundary layers. The flow field behind vortex generator is modeled by the information that is available from studies on the delta winglet. Also, the Reynolds-averaged Navier-Stoke equations for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of pseudo compressibility. The present results show that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall, and have a good agreement with the experimental data.

Experimental Investigations of Flow Characteristics by Wing Type Vortex Generators Set up Behind a Circular Cylinder in a Rectangular Channel (사각채널내 와동발생기가 부착된 원형실린더 하류 유동 특성에 대한 실험적 연구)

  • 이상민;하홍영;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1076-1085
    • /
    • 2001
  • Experimental investigations of the longitudinal vortices, which are produced by wing type vortex generators set up behind a circular cylinder in a rectangular channel, are presented. When the circular cylinder is set up in the rectangular channel, a horseshoe vortex is formed just upsteam of the circular cylinder. It generates a turbulent wake region behind the circular cylinder. Therefore, the region of the pressure loss behind the circular cylinder in increased and the size of the wake is small. These problems can be achieved by longitudinal vortices which are generated by wing-type vortex generator. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from 20 degree to 45, but the spacing between the vortex generators is fixed 6cm. The 3-dimensional mean velocity measurements are made using a five-hole probe. The vorticity field and streamwise velocity contour are obtained from the velocity field. The following results are obtained. Circulation strength is the maximum value when the angle of attack($\beta$) is $30^{\circ}$, and the vorticity field and streamwise velocity contour in case of $\beta$=$20^{\circ}$ show the trend similar to these in case of $\beta$=$30^{\circ}$, but do not in case of $\beta$=$45^{\circ}$.

  • PDF

Heat Transfer Enhancement for Fin-Tube Heat Exchanger Using Vortex Generators

  • Yoo, Seong-Yeon;Park, Dong-Seong;Chung, Min-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.109-115
    • /
    • 2002
  • Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin -circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of finn-flat tube heat exchanger without vertex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger At the same time, pressure losses for four types of heat exchanger is measured and compared.

Heat Transfer Enhancement by an Oscillating Frequency of Vortex Generator (와류발생기의 가진 주파수에 의한 열전달 향상)

  • Bang, Chang-Hoon;Kim, Jung-Soo;Yea, Yong-Taeg
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.7-14
    • /
    • 2006
  • A Problem of low-velocity forced convection in a channel flow with heated wall is of practical importance and widely considered in the design of devices such as heat exchangers, and electronic equipments. Therefore, there is an urgent need for improving heat transfer performance of heated wall in the channel. In the present study, an oscillating vortex generator method is proposed to enhance the heat transfer in a channel. In this method, a rectangular bars are set in the upstream of heated region of the channel. The bars are forced to oscillate normal to the inflow, and then actively and largely generates transverse vortices behind the bars. As a result, this apparatus can enhance the heat transfer rates remarkably. Because of the interaction between the flow and oscillating bars, the variations of the flow and thermal fields become time-dependent state.