DOI QR코드

DOI QR Code

A Comparative Study on the Flow and Heat Transfer Performance Characteristics of Vortex Generators and Guide Vane in Fin-Tube

핀-튜브에서 와류 발생기와 가이드 베인의 유동 및 전열 성능 특성에 관한 비교 연구

  • Bae, JiHwan (Department of Aerospace Engineering, Pusan National University) ;
  • Oh, YeongTaek (Department of Aerospace Engineering, Pusan National University) ;
  • Lee, ChangHyeong (Department of Aerospace Engineering, Pusan National University) ;
  • Lee, DeukHo (Department of Aerospace Engineering, Pusan National University) ;
  • Kim, KuiSoon (Department of Aerospace Engineering, Pusan National University)
  • 배지환 (부산대학교 항공우주공학과) ;
  • 오영택 (부산대학교 항공우주공학과) ;
  • 이창형 (부산대학교 항공우주공학과) ;
  • 이득호 (부산대학교 항공우주공학과) ;
  • 김귀순 (부산대학교 항공우주공학과)
  • Received : 2019.11.04
  • Accepted : 2020.02.12
  • Published : 2020.06.30

Abstract

In this paper, the effects of the delta winglet vortex generator, the airfoil vortex generator and the guide vanes on the friction factor and the Colburn factor in the fin-tube flow were studied. The vortex generator and guide vane were non-dimensionalized based on the channel height and tube diameter, and locations were selected according to the authors' suggestions. The Reynolds number based on the inlet velocity and the tube diameter was selected in the range of 1400-8000. As a result, the friction factor resulted in a 4.7% decrease in guide vanes at the Reynolds number 8000 over the conventional fin-tube, and the Colburn factor resulted in a 33% increase in the delta winglet vortex generator at the Reynolds number 3800 over the conventional fin-tube.

본 논문에서는 델타 윙렛 와류 발생기와 후퇴익형 와류 발생기 그리고 가이드 베인이 핀-튜브 유동에서의 압력 손실과 전열 성능에 미치는 효과를 비교하는 연구를 진행하였다. 와류 발생기와 가이드 베인은 채널 높이와 튜브의 지름을 기준으로 무차원화하였고, 위치는 저자들의 연구 결과에 따라 각각의 형상이 우수한 지점을 선정하였다. 레이놀즈 수는 입구 속도와 튜브 지름을 기준으로 하여 1400~8000으로 선정하였다. 결과적으로 압력 손실은 레이놀즈 수 8000에서 가이드 베인이 기존 핀-튜브 대비 4.7% 감소하는 효과를 보였고, 전열 성능은 레이놀즈 수 3800에서 델타 윙렛 와류 발생기가 기존 핀-튜브 대비 33% 정도 증가하는 결과를 확인하였다.

Keywords

References

  1. J. P. Joule, "On the surface-condensation of steam," Philosophical Transactions of the Royal Society of London, vol. 151, pp. 133-160, 1861. https://doi.org/10.1098/rstl.1861.0009
  2. J. M. Gorman, E. M. Sparrow and J. Ahn, "In-line tube-bank heat exchangers: Arrays with various numbers of thermally participating tubes," International Journal of Heat and Mass Transfer, vol. 132, pp. 837-847, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.167
  3. G. I. Mahmood, M. Z. Sabbagh and P. M. Ligrani, "Heat transfer in a channel with dimples and protrusions on opposite walls," Journal of Thermophysics and Heat Transfer, vol. 15, no. 3, pp. 275-283, 2001. https://doi.org/10.2514/2.6623
  4. Y. B. Tao, Y. L. He, J. Huang, Z. G. Wu and W. Q. Tao, "Three-dimensional numerical study of wavy fin-and-tube heat exchangers and field synergy principle analysis," International Journal of Heat and Mass Transfer, vol. 50, no. 5, pp. 1163-1175, 2007. https://doi.org/10.1016/j.ijheatmasstransfer.2006.03.019
  5. A. Joardar and A. M. Jacobi, "A numerical study of flow and heat transfer enhancement using an array of delta-winglet vortex generators in a fin-and-tube heat exchanger," Journal of Heat Transfer, vol. 129, no. 9, pp. 1156-1167, 2007. https://doi.org/10.1115/1.2740308
  6. L. O. Salviano, D. J. Dezan and J. I. Yanagihara, "Optimization of winglet-type vortex generator positions and angles in plate-fin compact heat exchanger: Response surface methodology and direct optimization," International Journal of Heat and Mass Transfer, vol. 82, pp. 373-387, 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.072
  7. C. H. Lee, Y. T. Oh, J. H. Bae, D. H. Lee and K. S. Kim, "Numerical Study on Heat Transfer and Flow Characteristics of Pin Fin with Swept Airfoil Shape Vortex Generator," Journal of the Korean Society of Propulsion Engineers, vol. 23, no. 4, pp. 28-34, 2019.
  8. D. H. Lee, Y. T. Oh, J. H. Bae, C. H. Lee and K. S. Kim, "Numerical Study on the Effect of Guide Vane Position and Angle on Heat Transfer and Flow Characteristics of a Pin-fin Channel with a Guide Vane," Journal of the Korean Society of Propulsion Engineers, vol. 23, no. 3, pp. 35-43, 2019.
  9. ANSYS CFX V15.0, "ANSYS CFX Reference Guide," ANSYS Inc, Canonsburg, PA, U.S.A., November. 2013.
  10. F. R. Menter, "Zonal Two Equation Turbulence Models For Aerodynamic Flows," 24th Fluid Dynamics Conference, Orlando, Florida., AIAA 93-2906, July. 1993.
  11. M. Fiebig, A. Valencia and N. K. Mitra, "Local heat transfer and flow losses in fin-and-tube heat exchangers with vortex generators: A comparison of round and flat tubes," Experimental Thermal and Fluid Science, vol. 8, no. 1, pp. 35-45, 1994. https://doi.org/10.1016/0894-1777(94)90071-X