• Title/Summary/Keyword: Vortex breakdown

Search Result 50, Processing Time 0.024 seconds

Large Eddy Simulation of Swirling Turbulent Flows in a Annular Combustor (환형연소기의 스월난류유동장에 대한 Large Eddy Simulation)

  • Kim, Jong-Chan;Sung, Hong-Gye;Cha, Bong-Jun;Yang, Gye-Byeung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.67-70
    • /
    • 2008
  • Production and dissipation of turbulent structure in a swirl stabilized combustor was investigated using three-dimensional Large Eddy Simulation analysis. The combustor of concern is the LM6000, lean premixed dry low-NOx annular combustor, developed by GEAE. Inlet condition was based on experimental data. Strong vortex breakdown in main stream, vortex ring proceeding downstream, and the turbulent structure periodically oscillating have been observed. Reasonable agreement was obtained by comparison of the results with experiments and previous LES studies.

  • PDF

Hybrid Diffusion Scheme of vortex Particle Method for Early Wake Past Semicircular Cylinder (반원형실린더 초기후류를 위한 입자와법의 하이브리드 확산기법)

  • Cho, Ji-Young;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.771-779
    • /
    • 2004
  • Unsteady behavior of the early wake in the viscous flow field past an impulsively started semicircular cylinder is studied numerically. In this paper, we propose the hybrid diffusion scheme to simulate dynamic characteristics of wake such as a fishtail-like flapping and an alternate vortex-shedding more accurately. This diffusion scheme based on particle strength exchange is mixed with the stochastic nature of random walk method. Also, the viscous splitting algorithm which calculates convective and diffusion terms successively is applied in order to handle random walk method effectively. Consequently, the early behavior of wake due to the breakdown of symmetrical vortici balance is more practically simulated with the vortex particle method.

Investigation of Vortex Interactions over a Delta Wing with the Leading Edge Extension (연장된 앞전을 갖는 델타형 날개에서의 와류 상호작용에 관한 연구)

  • 이기영;손명환;장영일
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.215-224
    • /
    • 2001
  • An experimental investigation was conducted on the interaction of vortices over a delta wing with the leading edge extension for three angles of attack($16^{\circ},\; 24^{\circ} \;and\; 28^{\circ}$) at Reynolds number of $1.76{\times}10^6.$ The experimental data included total pressure contours and velocity vectors using 5-hole probe measurements. Constant total pressure coefficient contours show the LEX vortex moves downward and outboard, while the wing vortex exhibited an inboard and upward migration. At near the trailing edge, these vortices reveal a direct interaction between the wing and LEX vortex, featuring a coiling of vortex cores about each other. The combined effect of the interaction of these two vortices and proximity to the wing surface results in the increase of the suction peak. This is in contrast to the result obtained on the delta wing alone configuration, where the effect of the vortex breakdown was manifested. The interaction of the wing and LEX vortices is more pronounced at higher AOA.

  • PDF

Large Eddy Simulation for the investigation of Roll Development Process in a Solid Rocket Motor (고체로켓 내부에서의 Roll 발생 현상 3D LES)

  • Kim, Jong-Chan;Hong, Ji-Seok;Yeom, Hyo-Won;Moon, Hee-Jang;Kim, Jin-Kon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.253-257
    • /
    • 2011
  • Vortex generation mechanism by inhibitor in a solid rocket motor have been investigated by 3D Large Eddy Simulation turbulent model. Most of the result of the present study are in good agreement with experimental data and previous numerical calculation. Vortex generation and breakdown behind inhibitor are periodically observed between inhibitor and nozzle head by flow-acoustic coupling mechanism. Vortex generation frequency is the same as the second-mode frequency in the motor. The roll shape vortex generation behind inhibitor induces non-uniform flow field at the nozzle entrance and its throat.

  • PDF

A Study about Flow Characteristic on Delta wing with/without LEX by PIV (PIV에 의한 델타형 날개에서의 LEX 부착여부에 따른 유동특성에 관한 연구)

  • LEE Hyun;KIM Beom-Seok;SOHN Myong-Hwan;LEE Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.771-774
    • /
    • 2002
  • Highly sweep leading edge extensions(LEX) applied to delta wings have greatly improved the subsonic maneuverability of contemporary fighters. In this study, systematic approach by PIV experimental method within a circulating water channel was adopted to study the fundamental characteristics of induced vortex generation, development and its breakdown appearing on a delta wing model with or without LEX in terms of four angles of attack($15^{\circ},\;20^{\circ},\;25^{\circ},\;30^{\circ}$) and six measuring sections of chord length($30{\%},\;40{\%},\;50{\%},\;60{\%},\;70{\%},\;80{\%}$). Sideslip effect in case of the LEX was also studied for two sideslip(yaw) angles($5^{\circ},\;10^{\circ}$) at one angle of attack(20). Distribution of time-averaged velocity vectors and vorticity over the delta wing model were compared along the chord length direction. Quantitative comparison of the maximum vorticity featuring the induced pressure distribution were also conducted to clarify the significance of the LEX existence. Animation presentation in velocity distribution was also implemented to reveal the effect of LEX with wing vortex interaction.

  • PDF

A Study about Vortex Flow Characteristics on Delta wing by Wime-Resolving PIV (시간해상도 PIV를 이용한 델타형 날개에서의 와류유동특성에 관한 연구)

  • Lee Hyun;Kim Beom-Seok;Sohn Myong-Hwan;Lee Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.105-108
    • /
    • 2002
  • Highly swept leading edge extension(LEX) applied to delta wings has greatly improved the subsonic maneuverability of contemporary fighters. In this study, systematic approach by PIV experimental method within a circulating water channel was adopted to study the fundamental characteristics of induced vortex generation, development and its breakdown appearing on a delta wing model with or without LEX in terms of four angles of attack$(15^{\circ},\;20^{\circ},\;25^{\circ},\;30^{\circ})$ and six measuring sections$(30\%,\;40\%,\;50\%,\;60\%,\;70\%,\;80\%)$ of chord length. Distributions of time-averaged velocity vectors and vorticities over the delta wing model were compared along the chord length direction. High-speed CCD camera which made it possible to acquire serial images is able to get the detailed information about the flow characteristics occurred on the delta wing. Especially quantitative comparison of the maximum vorticity featuring the induced pressure distribution were also conducted to clarity the significance of the LEX existence.

  • PDF

An Investigation of the Vortical Flow Characteristics over a Yawed Delta Wing with LEX at High Incidence (연장된 앞전을 갖는 편요된 삼각날개의 높은 받음각에서의 와류 특성에 관한 연구)

  • Lee, Ki-Young;Sohn, Myong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.105-112
    • /
    • 2002
  • An experimental study of the vortical flow characteristics around a yawed delta wing with the leading edge extension at high incidence angle is undertaken by upper surface pressure measurements. A special emphasis has been put on analyzing the basic physics of vortical flows, concerning the effects of incidence and sideslip angle on the aerodynamic characteristics of the wing, especially under high angle of attack. The experimental data has been dearly demonstrated the beneficial effect of the LEX vortex on the wing vortex. It leads to an essential stabilization of the wing vortex against its breakdown until at much higher incidence angle under small sideslip. An interesting flow feature is occurrence of the rolling moment reversal at a certain range of angle of attack and sideslip angle.

Effects of Strake Planform on the Vortex Flow of a Double-Delta Wing (이중 삼각날개의 와류에 미치는 스트레이크 평면형상의 영향)

  • 손명환;정형석
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.16-23
    • /
    • 2006
  • The effects of strake planform shapes on the vortex formation, interaction, and breakdown characteristics of double-delta wings were investigated through pressure measurements of upper wing surface and off-surface flow visualization. Three different shapes of strakes were attached to a delta wing respectively to form double-delta wing configurations and tested in a medium-sized subsonic wind tunnel. The results of the pressure measurements indicated that the strake planform having a higher sweep angle generated more concentrated vortex systems at upstream locations, which, however, tended to diffuse and break down much faster at the downstream locations. It was also found from the off-surface visualization results that the cause for the vortex concentration was due to the acceleration of coiling and merging processes between the wing and strake vortices.