• 제목/요약/키워드: Vortex Tube

검색결과 186건 처리시간 0.024초

강제와류 유수분리기의 걔발 (Development of a Forced-Vortex Oil-Water Separator)

  • 박외철;이광진
    • 한국안전학회지
    • /
    • 제12권2호
    • /
    • pp.22-26
    • /
    • 1997
  • A small scale centrifugal oil separator consisted of two concentric tubes was fabricated for spilt oil recovery. With speed control of the inner tube, its performance of oil separation was investigated. Oil-water mixture is separated by forced vortex motion with the rotating inner tube. Velocity and pressure distributions in the tubes were calculated. Control of rotating speed, which is the most influencing parameter, showed an optimum value 946rpm corresponding to the acceleration of 20g at the inner tube surface. Separation performance was suddenly deteriorated at rotating speed higher than 1200rpm.

  • PDF

An Outlook on the Draft-Tube-Surge Study

  • Nishi, Michihiro;Liu, Shuhong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권1호
    • /
    • pp.33-48
    • /
    • 2013
  • If large pressure fluctuation is observed in the draft tube of a Francis turbine at part-load operation, we have generally called it draft-tube-surge. As occurrence of this phenomenon seriously affects the limit of turbine operating range, extensive studies on the surge have been made since proposal of surge-frequency criterion given by Rheingans. According to the literature survey of related topics in recent IAHR symposiums on hydraulic machinery and systems, in which state-of-the-art contributions were mainly presented, a certain review of them may be desirable for an outlook on the future studies in this research field. Thus, in this review paper, the authors' previous attempts for the last three decades to challenge the following topics: a rational method for component test of a draft tube, nature of spiral vortex rope and its behavior in a draft tube and cavitation characteristics of pressure fluctuations, are introduced together with other related contributions, expecting that more useful and significant studies will be accomplished in the future.

단일 유로를 갖는 와류발생기의 에너지분리 특성 (Energy Separation Characteristics of Single Hole Vortex Generator)

  • 유갑종;장준영;최인수
    • 대한기계학회논문집B
    • /
    • 제25권8호
    • /
    • pp.1005-1012
    • /
    • 2001
  • When vortex tubes are applied to enhance the coefficient of performance of refrigeration system, the smaller one is preferable. However, the existing vortex generator with a nozzle hole diameter of 0.5mm was not suitable due to chocking of the nozzle hole. Therefore, experimental investigation was made to find an appropriate geometry of vortex generator, which could give a comparable effect of energy separation to commercial ones without chocking problem. The tested vortex generators were tangential and spiral types, which had single inducing channel with larger cross-sectional area than that of conventional multi-hole ones. The experimental result showed that the performance of the spiral type was better than that of the tangential one. As a small size of spiral one, the diameter of cold-end orifice is proposed to an half of tube diameter for the application to refrigeration system, while cold mass fraction ratio is 0.5∼0.6 for a desirable operation.

엇갈림 원주열 주위의 속도 특성에 관한 연구 (A Study on velocity Characteristics in a staggered tube array)

  • 배봉갑;박찬수;조대환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.291-292
    • /
    • 2006
  • This experimental study investigates the wake flow behind the flow characteristics around staggered tube arrays. In this experiment, the principal aim is to investigate the transition mechanism of the large vortex generating process in the wake having unique vortex shedding pattern. The detailed visualization is carried out using the PIV measurement. The transition mechanism of the large generating vortex is clarified by showing the streak lines. the vorticity and the statistical fluctuating velocity distributions.

  • PDF

환경${\cdot}$에너지 시스템에 관한 수치해석적 연구 : SNCR, 보텍스튜브 (Numerical Study on Energy and Environmental System : SNCR, Vortex Tube)

  • 장동순;신나일;서재동;신미수;엄태인;김동찬
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.162-170
    • /
    • 1999
  • Numerical study has been peformed to develop a computer code for the design & optimal operating condition of SNCR(Selective Noncatalytic Reactor) for NOx reduction together with the analysis of the performance of vortex tube. Especially for the SNCR of the scale of industrial boiler, the required mixing and residence time of $NH_3$ solution was successfully tested numerically by the implementation of some baffle setups in a combustor. The introduction of interesting phenomena of vortex tube and similar system is made together with a theoretical hypothesis and simple cold flow simulation for the flow field analysis.

  • PDF

Ranque-Hilsch 보텍스 튜브의 에너지 분리 과정에 대한 수치적 고찰 (Numerical Investigation of Energy Separation Process in a Ranque-Hilsch Vortex Tube)

  • 손창호
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.42-48
    • /
    • 2008
  • A numerical simulation has been conducted to investigate the physics of the Ranque-Hilsch vortex tube. Even though currently available turbulent models cannot predict such complex flow accurately, it was expected that the simulation would enlighten underlying physics qualitatively. The balance of energy on a fluid particle moving along some typical streamlines through shear work and heat transfer was investigated to explain the physics of energy separation process. It was found that the heat transfer cancels major part of the energy separation done by shear work. It was also found that the most of energy separation occur near inlet and hot outlet.

Axisymmetric Swirling Flow Simulation of the Draft Tube Vortex in Francis Turbines at Partial Discharge

  • Susan-Resiga, Romeo;Muntean, Sebastian;Stein, Peter;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.295-302
    • /
    • 2009
  • The flow in the draft tube cone of Francis turbines operated at partial discharge is a complex hydrodynamic phenomenon where an incoming steady axisymmetric swirling flow evolves into a three-dimensional unsteady flow field with precessing helical vortex (also called vortex rope) and associated pressure fluctuations. The paper addresses the following fundamental question: is it possible to compute the circumferentially averaged flow field induced by the precessing vortex rope by using an axisymmetric turbulent swirling flow model? In other words, instead of averaging the measured or computed 3D velocity and pressure fields we would like to solve directly the circumferentially averaged governing equations. As a result, one could use a 2D axi-symmetric model instead of the full 3D flow simulation, with huge savings in both computing time and resources. In order to answer this question we first compute the axisymmetric turbulent swirling flow using available solvers by introducing a stagnant region model (SRM), essentially enforcing a unidirectional circumferentially averaged meridian flow as suggested by the experimental data. Numerical results obtained with both models are compared against measured axial and circumferential velocity profiles, as well as for the vortex rope location. Although the circumferentially averaged flow field cannot capture the unsteadiness of the 3D flow, it can be reliably used for further stability analysis, as well as for assessing and optimizing various techniques to stabilize the swirling flow. In particular, the methodology presented and validated in this paper is particularly useful in optimizing the blade design in order to reduce the stagnant region extent, thus mitigating the vortex rope and expending the operating range for Francis turbines.

Numerical prediction of pressure pulsation amplitude for different operating regimes of Francis turbine draft tubes

  • Lipej, Andrej;Jost, Dragica;Meznar, Peter;Djelic, Vesko
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.375-382
    • /
    • 2009
  • Hydraulic instability associated with pressure fluctuations is a serious problem in hydraulic machinery. Pressure fluctuations are usually a result of a strong vortex created in the centre of a flow at the outlet of a runner. At every radial turbine and also at every single regulating axial turbine, the draft tube vortex appears at part-load operating regimes. The consequences of the vortex developed in the draft tube are very unpleasant pressure pulsation, axial and radial forces and torque fluctuation as well as turbine structure vibration. The consequences of the vortex are transferred upstream and downstream with amplitude and frequency modulation in respect of the turbine operating regime, cavitation conditions and air admitted content. Numerical prediction of the vortex appearance in the design stage is a very important task. The amplitude of the pressure pulsation is different for each operating regime therefore the main goal of this research was to numerically predict pressure pulsation amplitude versus different guide vane openings and to compare the results with experimental ones. For the numerical flow analysis of a complete Francis turbine (FT), the computer code ANSYS-CFX11 has been used.

다양한 형상에 따른 타원형 핀-튜브 열교환기의 열전달 특성에 관한 수치해석 (Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes)

  • 유재환;윤준규
    • 대한기계학회논문집B
    • /
    • 제37권4호
    • /
    • pp.367-375
    • /
    • 2013
  • 본 연구는 타원형 핀-튜브 열교환기에 대해 AR, 피치, 와류발생기의 위치, 튜브 표면의 돌기형상에 따른 열전달계수 및 압력강하 특성을 수치해석으로 분석하였다. CFD해석시 경계조건으로는 튜브표면의 온도는 348 K이고, 입구공기속도는 1~5 m/s 범위로 가정하였고, 수치해석시 사용된 모델로는 민감도를 고려하여 RSM 7차 난류모델을 하였다. 해석결과로는 AR 및 세로피치가 작을수록 열전달률이 향상되는 것으로 나타났으며 가로피치에 대한 영향은 근소한 차이를 나타냈으며, 와류발생기의 설치는 튜브 전방에 위치할수록 열전달특성상 양호한 것으로 나타났다. 또한 튜브표면의 돌기형상은 톱니형보다 원형이 압력강하나 열전달특성이 유리한 것으로 나타났다.

CFD 해석을 통한 Plain형 핀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 연구 (A study on heat transfer and pressure drop characteristics of plain fin-tube heat exchanger using CFD analysis)

  • 유소;윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.615-624
    • /
    • 2014
  • 핀-튜브 열교환기는 산업용 보일러, 라디에이터, 냉동기 등에 많이 사용되고 있어 열교환기의 성능향상을 위한 다양한 연구가 진행되고 있다. 본 연구에서는 Plain형 핀-튜브 열교환기에 대해 가로피치, 와류발생기위치, 튜브표면의 돌기형상 및 돌기개수 등의 변화에 따른 열전달 및 압력강하 특성을 이론적으로 해석하였다. CFD 해석시 경계조건으로는 SST 난류모델을 적용하였으며, 튜브표면의 온도는 333 K이고, 입구측 공기의 온도와 속도는 423~438 K, 1.5~2.1 m/s로 가정하였다. 해석결과로는 열전달계수는 가로피치에 대한 영향은 큰 차이가 없으며, 열전달특성은 와류발생기 설치가 튜브 전방부에 위치할수록 양호한 것으로 나타났다. 또한 튜브표면의 돌기형상은 열전달 및 압력강하 특성에서 원형이 톱니형과 삼각형보다 적절하였으며, 16개 원형 돌기형상이 가장 양호하였다.