• Title/Summary/Keyword: Von Mises stresses

Search Result 155, Processing Time 0.033 seconds

Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study

  • Mirac Berke Topcu, Ersoz;Emre, Mumcu
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.346-359
    • /
    • 2022
  • PURPOSE. Four and six implant-supported fixed full-arch prostheses with various framework materials were assessed under different loading conditions. MATERIALS AND METHODS. In the edentulous maxilla, the implants were positioned in a configuration of four to six implant modalities. CoCr, Ti, ZrO2, and PEEK materials were used to produce the prosthetic structure. Using finite element stress analysis, the first molar was subjected to a 200 N axial and 45° oblique force. Stresses were measured on the bone, implants, abutment screw, abutment, and prosthetic screw. The Von Mises, maximum, and minimum principal stress values were calculated and compared. RESULTS. The maximum and minimum principal stresses in bone were determined as CoCr < ZrO2 < Ti < PEEK. The Von Mises stresses on the implant, implant screw, abutment, and prosthetic screws were determined as CoCr < ZrO2 < Ti < PEEK. The highest Von Mises stress was 9584.4 Mpa in PEEK material on the prosthetic screw under 4 implant-oblique loading. The highest maximum principal stress value in bone was found to be 120.89 Mpa, for PEEK in 4 implant-oblique loading. CONCLUSION. For four and six implant-supported structures, and depending on the loading condition, the system accumulated different stresses. The distribution of stress was reduced in materials with a high elastic modulus. When choosing materials for implant-supported fixed prostheses, it is essential to consider both the number of implants and the mechanical and physical attributes of the framework material.

THE EFFECTS OF DENTIN BONDING AGENT THICKNESS ON STRESS DISTRIBUTION OF COMPOSITE-TOOTH INTERFACE : FINITE ELEMENT METHOD (상아질 접착제의 두께가 치아와 복합레진 경계의 응력발생에 미치는 영향에 관한 유한요소법 연구)

  • Park, Sang-Il;Kim, Ye-Mi;Roh, Byoung-Duk
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.442-449
    • /
    • 2009
  • The aim of this study was to examine that thick dentin bonding agent application or low modulus composite restoration could reduce stresses on dentin bonding agent layer. A mandibular first premolar with abfraction lesion was modeled by finite element method. The lesion was restored by different composite resins with variable dentin bonding agent thickness ($50{\mu}m$, $100{\mu}m$, $150{\mu}m$). 170N of occlusal loading was applied buccally or lingually. Von Mises stress on dentin bonding agent layer were measured. When thickness of dentin bonding agent was increased von Mises stresses at dentin bonding agent were decreased in both composites. Lower elastic modulus composite restoration showed decreased von Mises stresses. On root dentin margin more stresses were generated than enamel margin. For occlusal stress relief at dentin boning agent layer to applicate thick dentin bonding agent or to choose low elastic modulus composite is recommended.

Patterns between wall pressures and stresses with grain moisture on cylindrical silo

  • Kibar, Hakan
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.487-496
    • /
    • 2017
  • The focus of this study were to investigate patterns between wall pressures and stresses with grain moisture of soybean and rice varieties widespread cultivated in Turkey in order to determine needed designing parameters for structure analysis in silos at filling and discharge. In this study, the wall pressures and stresses were evaluated as a function of moisture contents in the range of 8-14% and 10-14% d.b. The pressures and von Mises stresses affected as significant by the change of grain moisture content. The main cause of pressure and stress drops is changed in bulk density. Therefore is extremely important bulk density and moisture content of the product at the structural design of the silos. 4 mm wall thickness, were determined to be safe for von Mises stresses in both soybean and rice silos is smaller than 188000 kPa.

An Impact Analysis of Adhesively-Bonded Single Lap Joint (단면 겹치기 접착 조인트의 충돌해석)

  • Lee, Ju-Won;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.172-177
    • /
    • 2010
  • This study presents an explicit dynamic analysis of an adhesively bonded single-lap joint under an impact load. The finite element software, ANSYS LS-DYNA, was used for the analysis and Von Mises stresses were obtained from the analysis. To model the adherents, solid elements were used and a rigid body was assumed for impactor modeling. Three impact heights (1 m, 5 m, and 10 m) were applied to consider different impact conditions and infinite boundary conditions were applied to the end-area of each adherent to save computational time in the analysis. In addition to investigating the stresses in the normal state, we also investigated the stresses in a damaged state (elasticity deterioration), simulated by a change in Young's modulus for 36 of the 3600 elements in the upper layer of the adhesive. The results showed that the location of damage is critical to the stress state of each layer (upper, middle, and lower).

Thermo-Mechanical Analysis of Though-silicon-via in 3D Packaging (Though-silicon-via를 사용한 3차원 적층 반도체 패키징에서의 열응력에 관한 연구)

  • Hwang, Sung-Hwan;Kim, Byoung-Joon;Jung, Sung-Yup;Lee, Ho-Young;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.69-73
    • /
    • 2010
  • Finite-element analyses were conducted to investigate the thermal stress in 3-dimensional stacked wafers package containing through-silicon-via (TSV), which is being widely used for 3-Dimensional integration. With finite element method (FEM), thermal stress was analyzed with the variation of TSV diameter, bonding diameter, pitch and TSV height. It was revealed that the maximum von Mises stresses occurred at the edge of top interface between Cu TSV and Si and the Si to Si bonding site. As TSV diameter increased, the von Mises stress at the edge of TSV increased. As bonding diameter increased, the von Mises stress at Si to Si bonding site increased. As pitch increased, the von Mises stress at Si to Si bonding site increased. The TSV height did not affect the von Mises stress. Therefore, it is expected that smaller Cu TSV diameter and pitch will ensure mechanical reliability because of the smaller chance of plastic deformation and crack initiation.

Stress distribution of molars restored with minimal invasive and conventional technique: a 3-D finite element analysis (최소 침습적 충진 및 통상적 인레이 법으로 수복한 대구치의 응력 분포: 3-D 유한 요소 해석)

  • Yang, Sunmi;Kim, Seon-mi;Choi, Namki;Kim, Jae-hwan;Yang, Sung-Pyo;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.297-305
    • /
    • 2018
  • Purpose: This study aimed to analyze stress distribution and maximum von Mises stress generated in intracoronal restorations and in tooth structures of mandibular molars with various types of cavity designs and materials. Materials and Methods: Three-dimensional solid models of mandible molar such as O inlay cavity with composite and gold (OR-C, OG-C), MO inlay cavity with composite and gold (MR-C, MG-C), and minimal invasive cavity on occlusal and proximal surfaces (OR-M, MR-M) were designed. To simulate masticatory force, static axial load with total force of 200 N was applied on the tooth at 10 occlusal contact points. A finite element analysis was performed to predict stress distribution generated by occlusal loading. Results: Restorations with minimal cavity design generated significantly lower values of von Mises stress (OR-M model: 26.8 MPa; MR-M model: 72.7 MPa) compared to those with conventional cavity design (341.9 MPa to 397.2 MPa). In tooth structure, magnitudes of maximum von Mises stresses were similar among models with conventional design (372.8 - 412.9 MPa) and models with minimal cavity design (361.1 - 384.4 MPa). Conclusion: Minimal invasive models generated smaller maximum von Mises stresses within restorations. Within the enamel, similar maximum von Mises stresses were observed for models with minimal cavity design and those with conventional design.

Stress distribution of oval and circular fiber posts in amandibular premolar: a three-dimensional finite element analysis

  • Er, Ozgur;Kilic, Kerem;Esim, Emir;Aslan, Tugrul;Kilinc, Halil Ibrahim;Yildirim, Sahin
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.434-439
    • /
    • 2013
  • PURPOSE. The aim of the present study was to evaluate the effects of posts with different morphologies on stress distribution in an endodontically treated mandibular premolar by using finite element models (FEMs). MATERIALS AND METHODS. A mandibular premolar was modeled using the ANSYS software program. Two models were created to represent circular and oval fiber posts in this tooth model. An oblique force of 300 N was applied at an angle of $45^{\circ}$ to the occlusal plane and oriented toward the buccal side. von Mises stress was measured in three regions each for oval and circular fiber posts. RESULTS. FEM analysis showed that the von Mises stress of the circular fiber post (426.81 MPa) was greater than that of the oval fiber post (346.34 MPa). The maximum distribution of von Mises stress was in the luting agent in both groups. Additionally, von Mises stresses accumulated in the coronal third of root dentin, close to the post space in both groups. CONCLUSION. Oval fiber posts are preferable to circular fiber posts in oval-shaped canals given the stress distribution at the postdentin interface.

A FINITE ELEMENT ANALYSIS ON THE 3-UNIT FIXED PROSTHESIS SUPPORTED WITH A NATURAL TOOTH AND ANGLE VARIABLE IMPLANT (고정성 보철치료에서 골유착성 임프란트의 경사도변화에 따른 변위와 응력에 관한 유한요소적 연구)

  • Ko Hyun;Woo Yi-Hyung;Park Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.580-610
    • /
    • 1993
  • The purpose of this study was to analyse the deflection and stress distribution at the supporting bone and it's superstructure by the alteration of angulation between implant and it's implant abutment. For this study, the free-end saddle case of mandibular first and second molar missing would be planned to restore with fixed prosthesis. So the mandibular second premolar was prepared for abutment, and the cylinder type osseointegrated implant was placed at the site of mandibular second molar for abutment. The finite element stress analysis was applied for this study. 13 two-dimensional FEM models were created, a standard model at $0^{\circ}$ and 12 models created by changing the angulation between implant and implant abutment as increasing the angulation mesially and distally with $5^{\circ}$ unittill $30^{\circ}$. The preprocessing decording, solving and postprocessing procedures were done by using FEM analysis software PATRAN and SUN-SPARC2GX. The deflections and von Mises stresses were calculated under concentrated load (load 1) and distributed load(load 2) at the reference points. The results were as follows : 1. Observing at standard model, the amount of total deflection at the distobuccal cusp-tip of pontic under concentrated load was largest of all, and that at the apex of implant was least of all, and the amount of total deflection at the buccal cusp-tip of second premolar under distributed load was largest of all, and that at the apex of implant was least of all. 2. Increasing the angulation mesially or distally, the amounts of total deflection were increased or decreased according to the reference points. But the order according to the amount of total deflection was not changed except apex of second premolar and central fossa of implant abutment under concentrated load during distal inclination. 3. Observing at standard model, the von Mises stress at the distal joint of pontic under concentrated load was largest of all, and that at the apex of implant was least of all. The von Mises stress at the distal margin of second premolar under distributed load was largest of all, and that at the apex of Implant was least of ail. 4. Increasing the angulation of implant mesially, the von Mises stresses at the mesial crest of implant were increased under concentrated load and distributed load, but those were increased remarkably under distributed load and so that at $30^{\circ}$ mesial inclination was largest of all. 5. Increasing the angulation of implant distally, the von Mises stresses at the distal crest of implant were increased remarkably under concentrated load and distributed load, and so those at $30^{\circ}$ distal inclination were largest of all.

  • PDF

A Study on the Strength Safety of Valve Structure for LPG Cylinder (LPG 용기용 밸브 구조물의 강도안전성에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.27-31
    • /
    • 2014
  • This paper presents a study on the strength safety of the weak parts at Part 1, Part 2 and Part 3 in the valve structure for LPG cylinder by using the finite element method. The maximum Von Mises stress of 27.5MPa was occurred at the corner edge of a valve Part 1 for the valve thickness of 1.5mm and LPG pressure of 3.5MPa. And the maximum Von Mises stresses for the valve thickness of 1.5mm and LPG pressure of 3.5MPa were 41.5MPa at Part 2 and 46.5MPa at Part 3. The FEM computed results show that the maximum Von Mises stresses at Part 1, Part 2 and Part 3 are very low value of 9.2~15.5% compared with the yield strength of a copper alloy, C3604. This means that the valve thickness for LPG cylinder is so over designed for the conventional valve. Thus, this paper recommends that the thickness at Part 1 and Part 2 is reduced for a light weight of a copper valve. But, the thickness at Part 3 may be better for a thick valve as a conventional valve for high torque strength.

Stress distributions in peri-miniscrew areas from cylindrical and tapered miniscrews inserted at different angles

  • Choi, Sung-Hwan;Kim, Seong-Jin;Lee, Kee-Joon;Sung, Sang-Jin;Chun, Youn-Sic;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.46 no.4
    • /
    • pp.189-198
    • /
    • 2016
  • Objective: The purpose of this study was to analyze stress distributions in the roots, periodontal ligaments (PDLs), and bones around cylindrical and tapered miniscrews inserted at different angles using a finite element analysis. Methods: We created a three-dimensional (3D) maxilla model of a dentition with extracted first premolars and used 2 types of miniscrews (tapered and cylindrical) with 1.45-mm diameters and 8-mm lengths. The miniscrews were inserted at $30^{\circ}$, $60^{\circ}$, and $90^{\circ}$ angles with respect to the bone surface. A simulated horizontal orthodontic force of 2 N was applied to the miniscrew heads. Then, the stress distributions, magnitudes during miniscrew placement, and force applications were analyzed with a 3D finite element analysis. Results: Stresses were primarily absorbed by cortical bone. Moreover, very little stress was transmitted to the roots, PDLs, and cancellous bone. During cylindrical miniscrew insertion, the maximum von Mises stress increased as insertion angle decreased. Tapered miniscrews exhibited greater maximum von Mises stress than cylindrical miniscrews. During force application, maximum von Mises stresses increased in both groups as insertion angles decreased. Conclusions: For both cylindrical and tapered miniscrew designs, placement as perpendicular to the bone surface as possible is recommended to reduce stress in the surrounding bone.