• Title/Summary/Keyword: Volumetric Shrinkage

Search Result 82, Processing Time 0.031 seconds

Autogenous Shrinkage of VES-LMC considering Thermal Deformation (VES-LMC의 열 변형을 고려한 자기수축)

  • Choi Pan Gil;Lee Jin Bum;Choi Seung Sic;Yun Kyong Gu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.781-784
    • /
    • 2005
  • Concrete structures often present volumetrical changes particularly due to thermal and moisture related shrinkages. Volumetric instability is detrimental to the performance and durability of concrete structures because structural elements are usually restrained. These restrained shrinkages develope tensile stresses which often results in cracking in combination with the low fracture resistance of concrete. Early-age defects in high-performance concrete due to thermal and autogenous deformation shorten the life cycle of concrete structures. Thus, it is necessary to examine the behavior .of early-age concrete at the stages of design and construction. The purpose of this study was to propose a shrinkage models of VES-LMC (very-early strength latex-modified concrete) at early-age considering thermal deformation and autogenous shrinkage.

  • PDF

A STUDY OF CONTRACTION SHRINKAGE OF COMPOSITE RESINS AND ORMOCERS WITH VARIOUS CURING TIMES (광조사 시간에 따른 복합레진과 Ormocer의 중합수축에 관한 연구)

  • Chung, Yeon-Chung;Min, Kyung-San;Lee, Hae-Hyoung;Cho, Kyung-Mo;Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.4
    • /
    • pp.326-333
    • /
    • 2003
  • Ormocer has organic-inorganic compound polymers. One of advantages of ormocer is reduced polymerization shrinkage. The purpose of this study was to compare the amount of contraction shrinkage of composite resins and ormocers. Additionally, the time of each material when there is no further change of contraction shrinkage was analysed. Four brands of composite resins (P-60. Surefil, Z-250 and Denfil) and two brands of ormocers (Definite and Admira) were used. 20 seconds, 40 seconds and 60 seconds of curing times were given. Contraction shrinkage of them were measured using a linometer for 80 seconds. The effect of material and curing time to contraction shrinkage at the time of 80 seconds was analysed by two-way ANOVA. The effect of time to contraction shrinkage was analysed by one-way ANOVA and the time when there was no further change of the contraction shrinkage was analysed. The results are as follows: 1. P-60, Definite, Z-250 and Denfil had no further change of contraction shrinkage from the time of 20 seconds, and Surefil and Admira had no further change of contraction shrinkage from the time of 10 seconds. 2. Statistical analysis revealed volumetric shrinkage varied among material (p<0,05). No significant difference of contraction shrinkage among different curing times was found, and there was no effect of interaction between materials and curing times to contraction shrinkage. 3. Definite and Admira showed the statistically same contraction shrinkage with those of Z-250 and P-60. which is higher than that of Surefil and lower than that of Denfil (p<0.05).

Application of shrinkage prediction models to restraint crack formation in unbonded post-tensioned slabs

  • Gabriela R. Martínez Lara;Myoungsu Shin;Yong-Hoon Byun;Goangseup Zi;Thomas H.-K. Kang
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.349-359
    • /
    • 2024
  • This study aims to investigate the effect of restraint configuration on crack formation due to shrinkage-and-creep-induced volumetric change in unbonded post-tensioned slabs. The first part of this study focuses on the comparison of existing shrinkage and creep calculation models that are used to predict the volume-changing behavior of concrete. The second part of this study presents the finite element analysis of a series of architectural configuration prototypes subjected to shrinkage and creep, which comprise unbonded post-tensioned slabs with various restraint configurations. The shrinkage and creep effects were simulated in the analysis by imposing strains obtained from one selected calculation model. The results suggest that a slab up to 300 ft. (90 m) in length does not require a closure strip if it is unrestrained by perimeter walls, and that the most effective restraint crack mitigation strategy for a slab restrained by perimeter walls is a partial wall release.

Review on The Measurement of Wood Shrinkage (목재수축률 측정에 대한 총설)

  • Lee, So Sun;So, Won-Tek;Jeong, Gi Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.746-756
    • /
    • 2015
  • The goal of this study was to review the wood shrinkage published in Journal of The Korean Wood Science and Technology from 1976 to 2015. Previous studies reported that shrinkage from Larix kaempferi in the tangential, radial, longitudinal directions ranged from 4.21%-9.79%, 2.09%-4.67%, 0.17%-0.33%, respectively. When different drying methods including closed cylinder drying, oven drying, and room temperature drying were used, volumetric shrinkage of Dipterocarpus grandiflorus was different, ranging from 31.6% to 21.0%. With an increment of the drying temperature of $115^{\circ}C$, $120^{\circ}C$, $125^{\circ}C$, the shrinkage of Larix kaempferi did not show a consistent trend. When sample size of Pinus densiflora was increased from $20{\times}20{\times}20mm$ to $100{\times}100{\times}100mm$, the tangential, radial and volumetric shrinkage decreased 2.61%, 1.32%, 0.80%, respectively. When a caliper having a sensitivity of 0.01 mm was used to measure $20mm^3$ specimen from Cryptomeria japonica, the measurement error occurred 1.97% in the radial direction and 35.7% in the longitudinal direction. From the previous studies, wood shrinkage could be influenced by sample size, drying method and measurement technique.

Autogenous Shrinkage of VES-LMC considering Hydration-Heat (VES-LMC의 열 특성을 고려한 자기수축)

  • Choi, Pan-Gil;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.73-80
    • /
    • 2005
  • Durability of concrete structures is seriously compromised by cracking at early-age concretes, particularly in high-strength or high-performance concrete structures. Since early-age cracking is influenced by various factors that affect the hydration process, early-age shrinkage and stress/strain development, the behavior at early-age is highly complex and no rational methodologies for its control have yet been established. Concrete structures often present volumetrical changes particularly due to thermal and moisture related shrinkages. Volumetric instability is detrimental to the performance and durability of concrete structures because structural elements are usually restrained. These restrained shrinkages develope tensile stresses which often results in cracking in combination with the low fracture resistance of concrete. Early-age defects in high-performance concrete due to thermal and autogenous deformation shorten the life cycle of concrete structures. Thus, it is necessary to examine the behavior of early-age concrete at the stages of design and construction. The purpose of this study was to propose a shrinkage models of VES-LMC (very-early strength latex-modified concrete) at early-age considering thermal deformation and autogenous shrinkage.

  • PDF

Guest Changes Host: Adsorption Site and Binding Nature of Hydrogen in MOF-5

  • Ju, Jae-Yong;Kim, Hyeong-Jun;Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.160.1-160.1
    • /
    • 2014
  • Using a density functional theory calculation including van der Waals (vdW) corrections, we report that $H_2$ adsorption in a cubic-crystalline microporous metal-organic framework (MOF-5) leads to volume shrinkage, which is in contrast to the intuition that gas adsorption in a confined system (e.g., pores in a material) increases the internal pressure and then leads to volumetric expansion. This extraordinary phenomenon is closely related to the vdW interactions between MOF and $H_2$ along with the $H_2$-$H_2$ interaction, rather than the Madelung-type electrostatic interaction. At low temperatures, $H_2$ molecules adsorbed in the MOF-5 form highly symmetrical interlinked nanocages that change from a cube-like shape to a sphere-like shape with $H_2$ loading, helping to exert centrosymmetric forces and hydrostatic (volumetric) stresses from the collection of dispersive interactions. The generated internal negative stress is sufficient to overcome the stiffness of the MOF-5 which is a soft material with a low bulk modulus (15.54 GPa).

  • PDF

Observation of Shrinkage Features of Cross Sectional Surface of Wood by LV-SEM (저진공주사현미경(LV-SEM)을 이용한 목재횡단면의 수축거동관찰)

  • Kang, Chunwon;Matsumura, Junji;Kang, Wook
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.17-23
    • /
    • 2008
  • The purpose of this study is to estimate the shrinkage of wood by LV-SEM (Low-Vacuum Scanning Electron Microscope) which can observe wetted wood sample. The shrinkage of small sample specimen by the dehumidification in the specimen chamber was investigated and compared with that of normal wood specimen. The observation of cross sectional surface of wood from wetted condition to dried condition can be achieved in about twenty minutes by means of the dehumidification in the specimen chamber of LV-SEM. The volumetric shrinkage of earlywood was almost the same as that of latewood. The shrinkage of SEM observation specimen was similar to that of normal wood specimen. From the correlation of the shrinkages between SEM observation specimen and normal wood specimen, it is surmised that the shrinkage of wood is more strictly dominated by shrinkage of latewood than that of earlywood.

Wood Physical and Mechanical Properties of Clonal Teak (Tectona grandis) Stands Under Different Thinning and Pruning Intensity Levels Planted in Java, Indonesia

  • Gama Widya SETA;Fanny HIDAYATI;WIDIYATNO WIDIYATNO;Mohammad NA'IEM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.109-132
    • /
    • 2023
  • The objective of this study was to reveal the impact of thinning and pruning regimes on the physical and mechanical properties of clonal teak wood planted in Java. In this study, a 15-year-old clonal teak plantation was carried out and the obtained data were evaluated with analysis of variance (ANOVA). The results showed that different thinning intensities had a significant impact on the alteration of heartwood volume development (F = 25.63; p < 0.0001). Meanwhile, the impact of different thinning treatments in several physical properties depends on the pruning treatment levels [moisture content (F= 12.18, p < 0.0001); tangential shrinkage (F = 15.60, p < 0.0001); T/R ratio (F = 7.17, p < 0.0001); and volumetric shrinkage (F = 10.81, p < 0.0001)]. However, different thinning intensities had no significant impact on wood basic density alteration (F = 0.72, p = 0.486), while pruning intensities affect the differences between radial (F = 3.52, p = 0.030) and volumetric shrinkage (F = 3.13, p = 0.044). In mechanical properties, thinning intensity levels did not promote any significant differences [modulus of elasticity (F = 1.41, p = 0.248); modulus of rupture (F = 0.94, p = 0.392); compressive strength parallel to grain (F = 0.21, p = 0.813); and compressive strength perpendicular to the grain (F = 0.41, p = 0.669)]. Meanwhile, different pruning treatments and combination treatments were not significantly altered all mechanical properties. These results indicated that the thinning and pruning regimes can enhance the mechanical properties without having a serious alteration in the physical properties of clonal teak wood.

Influence of Curing Conditions on Volumetric Changes in Concrete (양생 조건이 콘크리트의 체적 변화에 미치는 영향)

  • Lee, Kwang-Myong;SunWoo, Joo-Yeun;Lee, Hoi-Keun;Khayat, Kamal H.
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.331-338
    • /
    • 2006
  • This paper presents the experimental results on volumetric changes in ordinary portland cement concrete made with various water-to-cement ratios(W/C's) ranging from 0.32 to 0.50 and cured in low different conditions. Curing regimes employed in this work were designed to exhibit autogenous and drying shrinkage as well as swelling of concrete. The concrete avoided any moist evaporation(Regime f showed only autogenous shrinkage and the lower the W/C, the feater the autogenous shrinkage. The concrete exposed to air drying conditions at $20{\pm}1^{\circ}C$ and $60{\pm}3%$ RH after 6-day water curing at $20{\pm}1^{\circ}C$(Regime II) swelled and then started to shrink. The maximum swelling value of concrete developed in water curing was between 15 and $40{\pm}10^{-6}$, and the greatest total shrinkage(autogenous+drying shrinkage) was obtained for the mixture made with W/C of 0.32. The concrete let to air drying conditions(Regime III) showed greater total shrinkage compared to the concrete cured in Regime II. The concrete exposed to air drying condition after 6-day sealed curing(Regime IV) exhibited slightly smaller total shrinkage than that of the concrete cured in Regime III. Net drying shrinkage that can be derived from the results of Regime I, III, and IV increased as the W/C increased despite of similar total shrinkage. This result indicated that drying shrinkage governs total shrinkage of high-W/C concretes. In other words, a portion of autogenous shrinkage in total shrinkage increased in low-W/C concretes. Therefore, it should be controlled in terms of cracking potential. Finally, total shrinkage of high-strength and high-performance concrete made with low W/C can be effectively reduced by appropriate early moisture curing.

Effects of Mineral Admixture on the Characteristics of Grout for PSC Bridge (광물질 혼화재가 PSC 교량용 그라우트의 특성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Ahn, Ki-Hong;Kang, Su-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • The study investigates the effects of the type, replacement ratio and method of use of mineral admixtures on the fluidity, bleeding ratio, volumetric change and compressive strength of the grout in order to provide basic data for the development of high-quality grout for PSC bridges. In view of the results relative to the type and replacement ratio of the mineral admixtures, it appears that fly ash has practically no effect on the improvement of the fluidity nor on the reduction of bleeding and shrinkage of the grout. On the contrary, blast furnace slag and silica fume appear to have significant effect on the improvement of the fluidity or on the reduction of bleeding and shrinkage of the grout. With regard to the combined use of mineral admixtures, the combination of fly ash and blast furnace slag provides satisfactory fluidity but with significant increase of bleeding and shrinkage, whereas the combination of blast furnace slag and silica fume reduces bleeding and shrinkage but with large loss of the fluidity. On the other hand, the combination of fly ash and silica fume results in satisfactory fluidity accompanied with fair reduction of bleeding and shrinkage of the grout. In view of these results, the type, replacement ratio and method of use of the mineral admixtures are seen to influence the fluidity, bleeding and volumetric change of the grout. Accordingly, it is necessary to select the mineral admixtures considering these effects for their exploitation in the grout of PSC bridges.