• Title/Summary/Keyword: Volumetric Quality

Search Result 159, Processing Time 0.028 seconds

Enhancement of a parabolic face working accuracy using volumetric error compensation of NC milling machine (NC 밀링머신의 Volumetric 오차보상을 통한 포물면 가공의 정밀도 향상)

  • 이찬호;정을섭;이응석;김성청
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.917-921
    • /
    • 2000
  • One of the major limitations of productivity and quality in machining is machining accuracy of the machine tools. The machining accuracy is affected by geometric, volumetric errors of the machine tools. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the generation of the parabolic face profile. And the method is verified by the parabolic face machining experiment with a vertical three axes NC milling machine. After this study, we will inspect using On-machine measurement and study the repetitive machining by a compensated path

  • PDF

A Study on Volumetric Shrinkage of Injection Molded Part by Neural Network (신경회로망을 이용한 사출성형품의 체적수축률에 관한 연구)

  • Min, Byeong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.224-233
    • /
    • 1999
  • The quality of injection molded parts is affected by the variables such as materials, design variables of part and mold, molding machine, and processing conditions. It is difficult to consider all the variables at the same time to predict the quality. In this paper neural network was applied to analyze the relationship between processing conditions and volumetric shrinkage of part. Engineering plastic gear was used for the study, and the learning data was extracted by the simulation software like Moldflow. Results of neural network was good agreement with simulation results. Nonlinear regression model was formulated using the test data of 3,125 obtained from neural network, Optimal processing conditions were calculated to minimize the volumetric shrinkage of molded part by the application of RQP(Recursive Quadratic Programming) algorithm.

  • PDF

Measurement of the Volumetric Thermal Errors for CNC Machining Center Using the Star-type-styluses Tough Probe

  • Lee, Jae-Jong;Yang, Min-Yang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.111-117
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models the thermal errors for error analysis and develops an on-the-machine measurement system by which the volumetric errors are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments show that the developed system provides a high measuring accuracy, with repeatability of $\pm$2$\mu\textrm{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be also improved by using the developed measurement system when the spherical ball artifact is mounted on a modular fixture.

  • PDF

An Efficient Virtual Teeth Modeling for Dental Training System

  • Kim, Lae-Hyun;Park, Se-Hyung
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.41-44
    • /
    • 2009
  • This paper describes an implementation of virtual teeth modeling for a haptic dental simulation. The system allows dental students to practice dental procedures with realistic tactual feelings. The system requires fast and stable haptic rendering and volume modeling techniques working on the virtual tooth. In our implementation, a volumetric implicit surface is used for intuitive shape modification without topological constraints and haptic rendering. The volumetric implicit surface is generated from input geometric model by using a closest point transformation algorithm. And for visual rendering, we apply an adaptive polygonization method to convert volumetric teeth model to geometric model. We improve our previous system using new octree design to save memory requirement while increase the performance and visual quality.

A Study of an OMM System for Machined Spherical form Using the Volumetric Error Calibration of Machining Center (머시닝센터의 체적오차 보상을 통한 구면 가공형상 측정 OMM시스템 연구)

  • Kim, Sung-Chung;Kim, Ok-Hyun;Lee, Eung-Suk;Oh, Chang-Jin;Lee, Chan-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.98-105
    • /
    • 2001
  • The machining accuracy is affected by geometric, volumetric errors of the machine tools. To improve the product quality, we need to enhance the machining accuracy of the machine tools. To this point of view, measurement and inspection of finished part as error analysis of machine tools ahas been studied for last several decades. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the spherical surface manufacturing by modeling and compensation of volumetric error of the machine tool, 4) the system development of OMM without detaching work piece from a bed of machine tool after working, 5) the generation of the finished part profile by OMM. Furthermore, the output of OMM is compared with that of CMM, and verified the feasibility of the measurement system.

  • PDF

Dynamic Reconstruction Algorithm of 3D Volumetric Models (3D 볼류메트릭 모델의 동적 복원 알고리즘)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.207-215
    • /
    • 2022
  • The latest volumetric technology's high geometrical accuracy and realism ensure a high degree of correspondence between the real object and the captured 3D model. Nevertheless, since the 3D model obtained in this way constitutes a sequence as a completely independent 3D model between frames, the consistency of the model surface structure (geometry) is not guaranteed for every frame, and the density of vertices is very high. It can be seen that the interconnection node (Edge) becomes very complicated. 3D models created using this technology are inherently different from models created in movie or video game production pipelines and are not suitable for direct use in applications such as real-time rendering, animation and simulation, and compression. In contrast, our method achieves consistency in the quality of the volumetric 3D model sequence by linking re-meshing, which ensures high consistency of the 3D model surface structure between frames and the gradual deformation and texture transfer through correspondence and matching of non-rigid surfaces. And It maintains the consistency of volumetric 3D model sequence quality and provides post-processing automation.

3D Volumetric Capture-based Dynamic Face Production for Hyper-Realistic Metahuman (극사실적 메타휴먼을 위한 3D 볼류메트릭 캡쳐 기반의 동적 페이스 제작)

  • Oh, Moon-Seok;Han, Gyu-Hoon;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.751-761
    • /
    • 2022
  • With the development of digital graphics technology, the metaverse has become a significant trend in the content market. The demand for technology that generates high-quality 3D (dimension) models is rapidly increasing. Accordingly, various technical attempts are being made to create high-quality 3D virtual humans represented by digital humans. 3D volumetric capture is spotlighted as a technology that can create a 3D manikin faster and more precisely than the existing 3D model creation method. In this study, we try to analyze 3D high-precision facial production technology based on practical cases of the difficulties in content production and technologies applied in volumetric 3D and 4D model creation. Based on the actual model implementation case through 3D volumetric capture, we considered techniques for 3D virtual human face production and producted a new metahuman using a graphics pipeline for an efficient human facial generation.

Selecting the Optimum Process Condition Between the Factor Level Using Neural Network (신경망이론을 이용한 어인자의 수준사이를 고려한 최적조건 선정에 관한 연구)

  • 홍정의
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.2
    • /
    • pp.86-98
    • /
    • 2002
  • Defining the relationship between the quality of injection molded parts and the process condition is very complicate because of lots of factor are involved and each factor has a non-linearity. With the development of CAE(Computer Aided Engineering) technology, the estimation of volumetric shrinkage of injection mold parts is possible by computer simulation even though restricted application. In this research, Neural Network applied for finding optimal processing condition. The percent of volumetric shrinkage compared on each case and show neural network can be successfully applied selecting optimum condition not only within factor level but also between factor level.

Three-Dimensional Photon Counting Imaging with Enhanced Visual Quality

  • Lee, Jaehoon;Lee, Min-Chul;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.3
    • /
    • pp.180-187
    • /
    • 2021
  • In this paper, we present a computational volumetric reconstruction method for three-dimensional (3D) photon counting imaging with enhanced visual quality when low-resolution elemental images are used under photon-starved conditions. In conventional photon counting imaging with low-resolution elemental images, it may be difficult to estimate the 3D scene correctly because of a lack of scene information. In addition, the reconstructed 3D images may be blurred because volumetric computational reconstruction has an averaging effect. In contrast, with our method, the pixels of the elemental image rearrangement technique and a Bayesian approach are used as the reconstruction and estimation methods, respectively. Therefore, our method can enhance the visual quality and estimation accuracy of the reconstructed 3D images because it does not have an averaging effect and uses prior information about the 3D scene. To validate our technique, we performed optical experiments and demonstrated the reconstruction results.

Optimization of Processing Conditions in Injection Molding Using Genetic Algorithm (유전알고리듬을 이용한 사출성형 공정조건 최적화)

  • Choe, Won-Jun;Sin, Hyo-Cheol;Gwak, Sin-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2543-2551
    • /
    • 2000
  • Precision injection molding is an important technology for improving productivity and lowering costs in the fields of medical components, lenses and electrical connectors. The quality of injection molded parts is affected by various processing conditions such as filling time and packing pressure profile. It is difficult to consider all the variables at the same time for prediction of the quality. In this study, the genetic algorithm was used to obtain the optimal processing conditions for minimizing the volumetric shrinkage of molded parts. For a higher convergence rate, the method of design of experiments was used to analyze the relationship between processing conditions and volumetric shrinkage of molded parts, which served as analysis tool for the capability of searching optimal processing conditions but also greatly reduces the calculation time by utilizing the information of searching area. As a practical example, compact disks that require micron-level precision were chosen for the study.